Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dual-drug therapy targets one colon cancer gene


Johns Hopkins Kimmel Cancer Center scientists have found that interferon, used for 30 years to treat blood cancers, multiple sclerosis and hepatitis, selectively kills colon cancer cells when combined with another standard chemotherapy agent. New studies in cell lines suggest that the combination tactic, which targets a common gene pathway in colon cancer cells, could be more potent than either drug alone, and has fewer side effects.

"Instead of killing a tree by chopping it down, this approach focuses on cutting off the diseased branch, leaving the rest of the tree relatively unscathed," says Betsy Barnes, Ph.D., assistant professor of oncology and lead researcher.

By itself, interferon’s cell-killing activity is non-specific in targeting a variety of cells and cell-based gene activity, causing serious side effects such as heart failure and low blood counts, in addition to killing cancer cells. But in an August 15 issue of Cancer Research, the Kimmel Cancer Center scientists found one factor in interferon’s makeup that could have cancer-killing qualities, but with fewer side effects since it activates fewer genes.

Specifically, the team found that IRF5 (Interferon Regulatory Factor-5), which works as a tumor suppressor to halt cancer cell growth, is turned off by many cancers, but low levels of the suppressor protein are found in most colon cancers. That led Hopkins’ Barnes and her team to pursue its potential.

The first thing they found is that although interferon boosts IRF5 protein levels in colon cancer cells, it does not raise it enough to kill the cells. To boost IRF5 levels, the investigators combined interferon with a chemotherapy drug called irinotecan (CPT-11), a drug that damages DNA in rapidly dividing cells, rendering them unable to divide.

"We believe that interferon and irinotecan both work to increase IRF5 protein levels, but irinotecan activates the protein in the final step to initiate cancer cell death," says Barnes.

To demonstrate their theory that IRF5 is a key ingredient in the dual-drug therapy, the scientists tested various combinations of the drugs in colon cancer cell lines, with or without IRF5. Irinotecan alone causes 65 percent cell death in lines with IRF5 proteins present. Knock out IRF5 proteins and cell deaths drop to 37 percent. When the investigators combined irinotecan and interferon, more than 80 percent of colon cancer cells with IRF5 proteins died. Only 28 percent of cells died in those lines with IRF5 proteins knocked out.

"Not only does the combination of these drugs involve fewer gene activations, it may allow use of smaller amounts of both drugs and limit side effects," says Barnes. She also believes that cancer cells may find it more difficult to build resistance to two different drugs, a common problem when using single agents.

Cancers lacking tumor suppressor genes and the proteins they make are often difficult to treat because cells are unable to put the brake on abnormal growth. Her study indicates that IRF5 applies the brakes even in the absence of other tumor suppressor genes.

It is not clear whether the combination therapy would work in other cancers, since IRF5 is absent in a number of blood cancers. But since colon cancer is the third deadliest cancer in the United States, Barnes and her team will conduct further tests in genetically modified mice and potentially create a new strategy to treat the disease.

Colon cancer strikes more than 100,000 people in the United States annually and kills more than 56,000.

Funding for this research was provided by the American Cancer Society and a Flight Attendant Medical Research Institute Young Clinical Scientist Award.

Barnes’ research team on this study included Guodong Hu and Margo E. Mancl from Johns Hopkins.

Vanessa Wasta | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>