Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual-drug therapy targets one colon cancer gene

17.08.2005


Johns Hopkins Kimmel Cancer Center scientists have found that interferon, used for 30 years to treat blood cancers, multiple sclerosis and hepatitis, selectively kills colon cancer cells when combined with another standard chemotherapy agent. New studies in cell lines suggest that the combination tactic, which targets a common gene pathway in colon cancer cells, could be more potent than either drug alone, and has fewer side effects.



"Instead of killing a tree by chopping it down, this approach focuses on cutting off the diseased branch, leaving the rest of the tree relatively unscathed," says Betsy Barnes, Ph.D., assistant professor of oncology and lead researcher.

By itself, interferon’s cell-killing activity is non-specific in targeting a variety of cells and cell-based gene activity, causing serious side effects such as heart failure and low blood counts, in addition to killing cancer cells. But in an August 15 issue of Cancer Research, the Kimmel Cancer Center scientists found one factor in interferon’s makeup that could have cancer-killing qualities, but with fewer side effects since it activates fewer genes.


Specifically, the team found that IRF5 (Interferon Regulatory Factor-5), which works as a tumor suppressor to halt cancer cell growth, is turned off by many cancers, but low levels of the suppressor protein are found in most colon cancers. That led Hopkins’ Barnes and her team to pursue its potential.

The first thing they found is that although interferon boosts IRF5 protein levels in colon cancer cells, it does not raise it enough to kill the cells. To boost IRF5 levels, the investigators combined interferon with a chemotherapy drug called irinotecan (CPT-11), a drug that damages DNA in rapidly dividing cells, rendering them unable to divide.

"We believe that interferon and irinotecan both work to increase IRF5 protein levels, but irinotecan activates the protein in the final step to initiate cancer cell death," says Barnes.

To demonstrate their theory that IRF5 is a key ingredient in the dual-drug therapy, the scientists tested various combinations of the drugs in colon cancer cell lines, with or without IRF5. Irinotecan alone causes 65 percent cell death in lines with IRF5 proteins present. Knock out IRF5 proteins and cell deaths drop to 37 percent. When the investigators combined irinotecan and interferon, more than 80 percent of colon cancer cells with IRF5 proteins died. Only 28 percent of cells died in those lines with IRF5 proteins knocked out.

"Not only does the combination of these drugs involve fewer gene activations, it may allow use of smaller amounts of both drugs and limit side effects," says Barnes. She also believes that cancer cells may find it more difficult to build resistance to two different drugs, a common problem when using single agents.

Cancers lacking tumor suppressor genes and the proteins they make are often difficult to treat because cells are unable to put the brake on abnormal growth. Her study indicates that IRF5 applies the brakes even in the absence of other tumor suppressor genes.

It is not clear whether the combination therapy would work in other cancers, since IRF5 is absent in a number of blood cancers. But since colon cancer is the third deadliest cancer in the United States, Barnes and her team will conduct further tests in genetically modified mice and potentially create a new strategy to treat the disease.

Colon cancer strikes more than 100,000 people in the United States annually and kills more than 56,000.

Funding for this research was provided by the American Cancer Society and a Flight Attendant Medical Research Institute Young Clinical Scientist Award.

Barnes’ research team on this study included Guodong Hu and Margo E. Mancl from Johns Hopkins.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org
http://www.hopkinscoloncancercenter.org

More articles from Life Sciences:

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Cleaning up? Not without helpers
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>