Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leptin-signaling protein maintains normal body weight and energy balance in mice

17.08.2005


SH2-B enhances brain’s leptin sensitivity

What do laboratory mice at the University of Michigan Medical School have in common with millions of overweight Americans? Like many of us, these mice just can’t stop eating. They weigh twice as much as their littermates, consume nearly two times as much food, have elevated fatty acid and triglyceride levels, are resistant to insulin, and often develop type 2 diabetes.

Scientists at the University of Michigan Medical School are studying these mice to find out what causes their over-eating and morbid obesity. Is it a character flaw? Do the mice lack self-discipline? Is it from living in a fast-food society? How about the absence of a signaling molecule called SH2-B?



Liangyou Rui, Ph.D., an assistant professor of molecular and integrative physiology in the U-M Medical School, says the answer is SH2-B – a protein he discovered eight years ago while he was a U-M graduate student.

"SH2-B is an intracellular signaling molecule that increases the body’s sensitivity to leptin, a hormone which regulates energy balance and body weight in humans and animals," Rui says. "SH2-B interacts with JAK2 – a key signaling protein that mediates how cells respond to a variety of hormones, including leptin."

One of several hormones produced by fat tissue, leptin’s job is to keep the brain informed about the amount and availability of nutrients stored in body fat.

"We believe leptin sensitivity is determined by a balance between positive and negative regulators," Rui explains. "Previously we only knew the negative regulators. Now we’ve demonstrated that SH2-B is the first example of an intracellular signaling protein with a positive, rather than negative, effect on leptin signal transduction. Our research with mice that lack the SH2-B gene, and so can’t make SH2-B protein, indicates its presence is required to maintain normal energy metabolism and body weight in mice."

The latest U-M research results on SH2-B and how it regulates the brain’s sensitivity to leptin will be published in the August 2005 issue of Cell Metabolism.

"The more fat you have in your body, the higher the concentration of leptin in the bloodstream," Rui says. "Leptin sends a powerful signal to the brain saying: We have a surplus. Reduce feeding and increase energy expenditures."

Leptin’s signal is received by the hypothalamus – the part of the brain that regulates the endocrine system and the autonomic nervous system. In response, neurons in the hypothalamus send out chemical signals called neuropeptides, which suppress appetite and make us stop eating. When the system works properly, the body maintains a natural balance between energy taken in as food and energy expended in activity.

"It’s like the feedback mechanism on a thermostat set to maintain room temperature at 72 degrees," Rui explains. "Our brain has a similar set point for body weight, which is different for every person, because it is determined by genetics subject to modification by environmental factors. Sensitivity to leptin in the hypothalamus may be a key determinant of this set point."

When leptin travels through the bloodstream and reaches the hypothalamus, two types of neurons respond to its signal. Orexigenic neurons produce neuropeptides that promote eating. Neuropeptides produced by anorexigenic neurons, on the other hand, inhibit eating. To send its "stop eating" signal, leptin increases production of anorexigenic neuropeptides, while it inhibits production of orexigenic neuropeptides.

When Rui’s research team measured neuropeptides produced by hypothalamic neurons in mice without SH2-B and compared results to those from normal mice, they found major differences.

"Even though blood levels of leptin in SH2-B null mice were dramatically higher than in normal littermate controls, orexigenic neuropeptide levels were twice as high as in normal mice," says Decheng Ren, Ph.D., U-M research fellow and first author of the Cell Metabolism study. "Deleting SH2-B impairs the sensitivity of these hypothalamic neurons to leptin, and may contribute to over-eating and obesity in SH2-B null mice."

To see whether metabolic differences in energy expenditure, rather than over-eating, were responsible for the obesity of the SH2-B null mice, Ren measured oxygen intake, carbon dioxide production and body heat produced during a 24-hour cycle.

"Surprisingly, mice deficient in SH2-B consumed much more oxygen and generated more carbon dioxide and body heat than normal mice," Ren says. "Overall, their energy expenditure was 63 percent higher than littermate controls. But even though their energy expenditures were higher, mice without SH2-B still become obese, primarily because of their extreme over-eating."

Injecting SH2-B deficient mice with supplemental mouse leptin didn’t affect their food intake or weight gain, although it significantly reduced both weight and eating behavior in normal control mice.

"These results demonstrate that deletion of the SH2-B gene causes severe leptin resistance, which appears to be the major factor responsible for obesity in our experimental mice," Rui says.

In future research, Rui hopes to learn exactly how SH2-B modulates leptin sensitivity in deferent hypothalamic neurons, and hopes to learn more about the set point for energy homeostasis and body weight in the brain. He also will continue his previous research on how SH2-B contributes to the development of insulin resistance and type 2 diabetes. And he wants to join forces with a clinical collaborator to screen patients with obesity and diabetes for potential mutations in the human SH2-B gene.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>