Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leptin-signaling protein maintains normal body weight and energy balance in mice

17.08.2005


SH2-B enhances brain’s leptin sensitivity

What do laboratory mice at the University of Michigan Medical School have in common with millions of overweight Americans? Like many of us, these mice just can’t stop eating. They weigh twice as much as their littermates, consume nearly two times as much food, have elevated fatty acid and triglyceride levels, are resistant to insulin, and often develop type 2 diabetes.

Scientists at the University of Michigan Medical School are studying these mice to find out what causes their over-eating and morbid obesity. Is it a character flaw? Do the mice lack self-discipline? Is it from living in a fast-food society? How about the absence of a signaling molecule called SH2-B?



Liangyou Rui, Ph.D., an assistant professor of molecular and integrative physiology in the U-M Medical School, says the answer is SH2-B – a protein he discovered eight years ago while he was a U-M graduate student.

"SH2-B is an intracellular signaling molecule that increases the body’s sensitivity to leptin, a hormone which regulates energy balance and body weight in humans and animals," Rui says. "SH2-B interacts with JAK2 – a key signaling protein that mediates how cells respond to a variety of hormones, including leptin."

One of several hormones produced by fat tissue, leptin’s job is to keep the brain informed about the amount and availability of nutrients stored in body fat.

"We believe leptin sensitivity is determined by a balance between positive and negative regulators," Rui explains. "Previously we only knew the negative regulators. Now we’ve demonstrated that SH2-B is the first example of an intracellular signaling protein with a positive, rather than negative, effect on leptin signal transduction. Our research with mice that lack the SH2-B gene, and so can’t make SH2-B protein, indicates its presence is required to maintain normal energy metabolism and body weight in mice."

The latest U-M research results on SH2-B and how it regulates the brain’s sensitivity to leptin will be published in the August 2005 issue of Cell Metabolism.

"The more fat you have in your body, the higher the concentration of leptin in the bloodstream," Rui says. "Leptin sends a powerful signal to the brain saying: We have a surplus. Reduce feeding and increase energy expenditures."

Leptin’s signal is received by the hypothalamus – the part of the brain that regulates the endocrine system and the autonomic nervous system. In response, neurons in the hypothalamus send out chemical signals called neuropeptides, which suppress appetite and make us stop eating. When the system works properly, the body maintains a natural balance between energy taken in as food and energy expended in activity.

"It’s like the feedback mechanism on a thermostat set to maintain room temperature at 72 degrees," Rui explains. "Our brain has a similar set point for body weight, which is different for every person, because it is determined by genetics subject to modification by environmental factors. Sensitivity to leptin in the hypothalamus may be a key determinant of this set point."

When leptin travels through the bloodstream and reaches the hypothalamus, two types of neurons respond to its signal. Orexigenic neurons produce neuropeptides that promote eating. Neuropeptides produced by anorexigenic neurons, on the other hand, inhibit eating. To send its "stop eating" signal, leptin increases production of anorexigenic neuropeptides, while it inhibits production of orexigenic neuropeptides.

When Rui’s research team measured neuropeptides produced by hypothalamic neurons in mice without SH2-B and compared results to those from normal mice, they found major differences.

"Even though blood levels of leptin in SH2-B null mice were dramatically higher than in normal littermate controls, orexigenic neuropeptide levels were twice as high as in normal mice," says Decheng Ren, Ph.D., U-M research fellow and first author of the Cell Metabolism study. "Deleting SH2-B impairs the sensitivity of these hypothalamic neurons to leptin, and may contribute to over-eating and obesity in SH2-B null mice."

To see whether metabolic differences in energy expenditure, rather than over-eating, were responsible for the obesity of the SH2-B null mice, Ren measured oxygen intake, carbon dioxide production and body heat produced during a 24-hour cycle.

"Surprisingly, mice deficient in SH2-B consumed much more oxygen and generated more carbon dioxide and body heat than normal mice," Ren says. "Overall, their energy expenditure was 63 percent higher than littermate controls. But even though their energy expenditures were higher, mice without SH2-B still become obese, primarily because of their extreme over-eating."

Injecting SH2-B deficient mice with supplemental mouse leptin didn’t affect their food intake or weight gain, although it significantly reduced both weight and eating behavior in normal control mice.

"These results demonstrate that deletion of the SH2-B gene causes severe leptin resistance, which appears to be the major factor responsible for obesity in our experimental mice," Rui says.

In future research, Rui hopes to learn exactly how SH2-B modulates leptin sensitivity in deferent hypothalamic neurons, and hopes to learn more about the set point for energy homeostasis and body weight in the brain. He also will continue his previous research on how SH2-B contributes to the development of insulin resistance and type 2 diabetes. And he wants to join forces with a clinical collaborator to screen patients with obesity and diabetes for potential mutations in the human SH2-B gene.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>