Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weight control protein may yield antiobesity drugs

17.08.2005


A weight control protein with a key role in the brain’s ability to monitor body fat content may yield new approaches for treating obesity and type 2 diabetes, according to a new report in the August issue of Cell Metabolism. The findings in mice further suggest that particular variants of the protein SH2-B might underlie obesity in humans, the researchers said.



SH2-B, which has multiple functions in cells throughout the body, keeps the brain sensitive to the fat hormone leptin, found researchers from the University of Michigan Medical School. Produced by fat tissue, the leptin hormone sends signals to the brain about the body’s fat content. That signal, in turn, elicits adjustments in appetite and energy expenditure to maintain normal body weight.

Mice lacking SH2-B overeat and become obese, the team found. The animals additionally develop a metabolic syndrome characterized by high blood concentrations of leptin, insulin, and lipids. They also develop fatty livers and high blood sugar, the group reports.


"Our findings reveal SH2-B as an important positive regulator of leptin sensitivity inside cells of the brain region known as the hypothalamus," said senior author of the study, Liangyou Rui. The hypothalamus is a key area in the central nervous system that integrates neuronal, hormonal, and nutrient-related signals to maintain body weight, he explained.

Leptin is a hormone produced by fat that normally decreases food intake and increases energy expenditure. In many species, including humans, the hormone acts to stabilize weight and glucose balance through activating its receptors in the hypothalamus.

Earlier work by Rui’s group found that SH2-B binds to a second protein, JAK2, to promote leptin signaling in cultured cells. Further work then identified a physiological role for SH2-B in the regulation of blood glucose; mice deficient for the protein develop insulin resistance and type 2 diabetes, they found.

The current study shows that SH2-B also regulates energy balance and body weight by enhancing leptin sensitivity in animals, Rui said.

Mice lacking a functional copy of the SH2-B gene were smaller at birth than normal mice. After 5 weeks of age, however, the mice began gaining weight rapidly and were about twice as heavy as normal littermates after several months, with at least a 2.8-fold increase in body fat content.

The mice also exhibited a near doubling of blood lipid levels and their livers grew to more than twice their normal size owing to a massive accumulation of fat, Rui said.

Moreover, the animals developed severely elevated blood sugar, insulin, and leptin concentrations. Elevated leptin levels are a hallmark of leptin resistance, a primary risk factor for obesity, he added.

Further examination found that the animals lacking SH2-B ate nearly twice as much as normal. Surprisingly, Rui said, the animals burned more calories; however, the animals still have a net positive energy imbalance of more than 60% higher than normal animals at 18–19 weeks of age, owing to voracious feeding. The mice also exhibited defects in the leptin signaling pathway in brain cells of the hypothalamus, they report.

Earlier studies have found that mice lacking leptin show marked obesity that is restored following leptin treatment, Rui said. However, obese animals, with high blood concentrations of the hormone, often exhibit resistance to leptin’s usual effects. As a result, leptin itself has proven to be insufficient for obesity therapy.

The new findings reveal SH2-B as a critical component in maintaining leptin sensitivity, Rui said. Therefore, SH2-B and signaling events regulated by SH2-B may serve as potential therapeutic targets for the treatment of obesity and type 2 diabetes.

"Because SH2-B sensitizes both leptin and insulin, action drugs that mimic or enhance SH2-B action may improve insulin and leptin sensitivity and have potential value in treatment of obesity and type 2 diabetes," he added.

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>