Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weight control protein may yield antiobesity drugs

17.08.2005


A weight control protein with a key role in the brain’s ability to monitor body fat content may yield new approaches for treating obesity and type 2 diabetes, according to a new report in the August issue of Cell Metabolism. The findings in mice further suggest that particular variants of the protein SH2-B might underlie obesity in humans, the researchers said.



SH2-B, which has multiple functions in cells throughout the body, keeps the brain sensitive to the fat hormone leptin, found researchers from the University of Michigan Medical School. Produced by fat tissue, the leptin hormone sends signals to the brain about the body’s fat content. That signal, in turn, elicits adjustments in appetite and energy expenditure to maintain normal body weight.

Mice lacking SH2-B overeat and become obese, the team found. The animals additionally develop a metabolic syndrome characterized by high blood concentrations of leptin, insulin, and lipids. They also develop fatty livers and high blood sugar, the group reports.


"Our findings reveal SH2-B as an important positive regulator of leptin sensitivity inside cells of the brain region known as the hypothalamus," said senior author of the study, Liangyou Rui. The hypothalamus is a key area in the central nervous system that integrates neuronal, hormonal, and nutrient-related signals to maintain body weight, he explained.

Leptin is a hormone produced by fat that normally decreases food intake and increases energy expenditure. In many species, including humans, the hormone acts to stabilize weight and glucose balance through activating its receptors in the hypothalamus.

Earlier work by Rui’s group found that SH2-B binds to a second protein, JAK2, to promote leptin signaling in cultured cells. Further work then identified a physiological role for SH2-B in the regulation of blood glucose; mice deficient for the protein develop insulin resistance and type 2 diabetes, they found.

The current study shows that SH2-B also regulates energy balance and body weight by enhancing leptin sensitivity in animals, Rui said.

Mice lacking a functional copy of the SH2-B gene were smaller at birth than normal mice. After 5 weeks of age, however, the mice began gaining weight rapidly and were about twice as heavy as normal littermates after several months, with at least a 2.8-fold increase in body fat content.

The mice also exhibited a near doubling of blood lipid levels and their livers grew to more than twice their normal size owing to a massive accumulation of fat, Rui said.

Moreover, the animals developed severely elevated blood sugar, insulin, and leptin concentrations. Elevated leptin levels are a hallmark of leptin resistance, a primary risk factor for obesity, he added.

Further examination found that the animals lacking SH2-B ate nearly twice as much as normal. Surprisingly, Rui said, the animals burned more calories; however, the animals still have a net positive energy imbalance of more than 60% higher than normal animals at 18–19 weeks of age, owing to voracious feeding. The mice also exhibited defects in the leptin signaling pathway in brain cells of the hypothalamus, they report.

Earlier studies have found that mice lacking leptin show marked obesity that is restored following leptin treatment, Rui said. However, obese animals, with high blood concentrations of the hormone, often exhibit resistance to leptin’s usual effects. As a result, leptin itself has proven to be insufficient for obesity therapy.

The new findings reveal SH2-B as a critical component in maintaining leptin sensitivity, Rui said. Therefore, SH2-B and signaling events regulated by SH2-B may serve as potential therapeutic targets for the treatment of obesity and type 2 diabetes.

"Because SH2-B sensitizes both leptin and insulin, action drugs that mimic or enhance SH2-B action may improve insulin and leptin sensitivity and have potential value in treatment of obesity and type 2 diabetes," he added.

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>