Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the use of meat/bone meal as fertiliser - new fertiliser for organic farming uses P&S

16.08.2005


Meat and bone meal (MBM) contains mineral elements essential for all organisms, typically 6-8% Nitrogen (N) and 5-6% Phosphorus (P). Phosphorus is essentially short lived and non renewable. It is estimated that currently the world’s naturally occurring stocks of P will only last for 50-150 years. The amount of P in MBM corresponds to less than 10% of the P-requirement of the entire needs of German agriculture, or approximately a third of the requirement of mineral P-fertilisers.



Last year’s meat and bone meal production in Germany was 163 million kg, and in Italy 260 million kg, of this in Germany only 4% went into pet food, but in Italy an astonishing 22% went for pets. The current EU feeding prohibition represents a considerable waste problem, which then makes their inclusion in fertilisers attractive, because the price of disposal is approx. 200 EUR for burning every ton of.

Under EU law MBMs are assigned to the fertiliser type "organic NP-fertilisers". However compared with mineral fertilisers MBMs have the difficulty of calculating the mineralisation of N from proteins. N from animal remains works slowly, but it is still useful. This delayed effect of the organic bound N does not coincide with the plants N demand and the mobilisation of N from the fertiliser. So, total expected losses are higher and the degree of use of N from animal remains is approximately 10% less than with mineral N. It also has to be remembered that the soil fauna, mainly live on decomposition products of plant substances, and can be seen as "vegetarian". However predators in the food chain prefer MBM, so they would gain an ecological advantage and this would potentially alter the biodiversity of soil life.


The use of MBM as a NP-fertiliser is comparable to the effect of soft rock phosphates and this, on normal agricultural soils, is hardly available for plants. So, in the absence of any further chemical digestion of rock phosphates a P-effect from organic NP-fertilisers made from of MBM when the mineral parts are ground to very small particles (90% passing a 0.063 mm mesh; 99% passing a 0.0125mm mesh) can only be anticipated on acid (pH ? 5.5) soils.

Experiments with MBM have been carried out at the Institute of Plant Nutrition and Soil Science of the Federal Agricultural Research Centre (FAL) in Braunschweig, Germany since 2001 to improve the availability of P in MBM. This has led them to improve the solubility in a combination of MBM that has been incinerated with elemental sulphur. Sulphur is converted into sulphuric acid by Thiobacills in the soil. Both elemental sulphur and MBM ashes are contained in EU decree 2092/91, making this new fertiliser suitable for organic farming. In comparison to conventional fertilisers the lower contents of heavy metals, especially cadmium and uranium, make the combination product particularly attractive.

Contact: Prof. Dr. Dr. Ewald Schnug, Federal Agricultural Research Centre (FAL), Institute for Plant Nutrition and Soil Science, Bundesallee 50, 38116 Braunschweig, E-Mail: pb@fal.de

Margit Fink | idw
Further information:
http://www.idw-online.de/pages/de/news98656
http://www.fal.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>