Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the use of meat/bone meal as fertiliser - new fertiliser for organic farming uses P&S

16.08.2005


Meat and bone meal (MBM) contains mineral elements essential for all organisms, typically 6-8% Nitrogen (N) and 5-6% Phosphorus (P). Phosphorus is essentially short lived and non renewable. It is estimated that currently the world’s naturally occurring stocks of P will only last for 50-150 years. The amount of P in MBM corresponds to less than 10% of the P-requirement of the entire needs of German agriculture, or approximately a third of the requirement of mineral P-fertilisers.



Last year’s meat and bone meal production in Germany was 163 million kg, and in Italy 260 million kg, of this in Germany only 4% went into pet food, but in Italy an astonishing 22% went for pets. The current EU feeding prohibition represents a considerable waste problem, which then makes their inclusion in fertilisers attractive, because the price of disposal is approx. 200 EUR for burning every ton of.

Under EU law MBMs are assigned to the fertiliser type "organic NP-fertilisers". However compared with mineral fertilisers MBMs have the difficulty of calculating the mineralisation of N from proteins. N from animal remains works slowly, but it is still useful. This delayed effect of the organic bound N does not coincide with the plants N demand and the mobilisation of N from the fertiliser. So, total expected losses are higher and the degree of use of N from animal remains is approximately 10% less than with mineral N. It also has to be remembered that the soil fauna, mainly live on decomposition products of plant substances, and can be seen as "vegetarian". However predators in the food chain prefer MBM, so they would gain an ecological advantage and this would potentially alter the biodiversity of soil life.


The use of MBM as a NP-fertiliser is comparable to the effect of soft rock phosphates and this, on normal agricultural soils, is hardly available for plants. So, in the absence of any further chemical digestion of rock phosphates a P-effect from organic NP-fertilisers made from of MBM when the mineral parts are ground to very small particles (90% passing a 0.063 mm mesh; 99% passing a 0.0125mm mesh) can only be anticipated on acid (pH ? 5.5) soils.

Experiments with MBM have been carried out at the Institute of Plant Nutrition and Soil Science of the Federal Agricultural Research Centre (FAL) in Braunschweig, Germany since 2001 to improve the availability of P in MBM. This has led them to improve the solubility in a combination of MBM that has been incinerated with elemental sulphur. Sulphur is converted into sulphuric acid by Thiobacills in the soil. Both elemental sulphur and MBM ashes are contained in EU decree 2092/91, making this new fertiliser suitable for organic farming. In comparison to conventional fertilisers the lower contents of heavy metals, especially cadmium and uranium, make the combination product particularly attractive.

Contact: Prof. Dr. Dr. Ewald Schnug, Federal Agricultural Research Centre (FAL), Institute for Plant Nutrition and Soil Science, Bundesallee 50, 38116 Braunschweig, E-Mail: pb@fal.de

Margit Fink | idw
Further information:
http://www.idw-online.de/pages/de/news98656
http://www.fal.de

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>