Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the use of meat/bone meal as fertiliser - new fertiliser for organic farming uses P&S

16.08.2005


Meat and bone meal (MBM) contains mineral elements essential for all organisms, typically 6-8% Nitrogen (N) and 5-6% Phosphorus (P). Phosphorus is essentially short lived and non renewable. It is estimated that currently the world’s naturally occurring stocks of P will only last for 50-150 years. The amount of P in MBM corresponds to less than 10% of the P-requirement of the entire needs of German agriculture, or approximately a third of the requirement of mineral P-fertilisers.



Last year’s meat and bone meal production in Germany was 163 million kg, and in Italy 260 million kg, of this in Germany only 4% went into pet food, but in Italy an astonishing 22% went for pets. The current EU feeding prohibition represents a considerable waste problem, which then makes their inclusion in fertilisers attractive, because the price of disposal is approx. 200 EUR for burning every ton of.

Under EU law MBMs are assigned to the fertiliser type "organic NP-fertilisers". However compared with mineral fertilisers MBMs have the difficulty of calculating the mineralisation of N from proteins. N from animal remains works slowly, but it is still useful. This delayed effect of the organic bound N does not coincide with the plants N demand and the mobilisation of N from the fertiliser. So, total expected losses are higher and the degree of use of N from animal remains is approximately 10% less than with mineral N. It also has to be remembered that the soil fauna, mainly live on decomposition products of plant substances, and can be seen as "vegetarian". However predators in the food chain prefer MBM, so they would gain an ecological advantage and this would potentially alter the biodiversity of soil life.


The use of MBM as a NP-fertiliser is comparable to the effect of soft rock phosphates and this, on normal agricultural soils, is hardly available for plants. So, in the absence of any further chemical digestion of rock phosphates a P-effect from organic NP-fertilisers made from of MBM when the mineral parts are ground to very small particles (90% passing a 0.063 mm mesh; 99% passing a 0.0125mm mesh) can only be anticipated on acid (pH ? 5.5) soils.

Experiments with MBM have been carried out at the Institute of Plant Nutrition and Soil Science of the Federal Agricultural Research Centre (FAL) in Braunschweig, Germany since 2001 to improve the availability of P in MBM. This has led them to improve the solubility in a combination of MBM that has been incinerated with elemental sulphur. Sulphur is converted into sulphuric acid by Thiobacills in the soil. Both elemental sulphur and MBM ashes are contained in EU decree 2092/91, making this new fertiliser suitable for organic farming. In comparison to conventional fertilisers the lower contents of heavy metals, especially cadmium and uranium, make the combination product particularly attractive.

Contact: Prof. Dr. Dr. Ewald Schnug, Federal Agricultural Research Centre (FAL), Institute for Plant Nutrition and Soil Science, Bundesallee 50, 38116 Braunschweig, E-Mail: pb@fal.de

Margit Fink | idw
Further information:
http://www.idw-online.de/pages/de/news98656
http://www.fal.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>