Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain tumors may originate with neural stem cells

16.08.2005


Researchers at UT Southwestern Medical Center have determined that stem cells in a certain region of the brain may be the source of a particular type of incurable brain tumor and may be implicated in other types of brain cancers as well.



The research, conducted in mice, appears in the August issue of the journal Cancer Cell. The findings support growing evidence that adult stem cells may play a role in the development of some forms of cancer, said Dr. Luis Parada, senior author on the paper and director of the Center for Developmental Biology and the Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration at UT Southwestern.

"Continued research into the biology of adult stem cells will aid in the understanding of how cancers originate and develop and may lead to possible new therapies for treating aggressive, currently incurable brain tumors," said Dr. Parada.


Malignant astrocytoma, or glioma, is one of the most common types of brain tumor in adults. The tumors are thought to arise from glial cells, which are non-nerve cells that provide support and nutrition to cells of the nervous system.

Because these incurable cancers generally are not detected until they are advanced, when symptoms have begun to develop, scientists have been unsure where, or what, initiates the process of uncontrolled cell replication that leads to the formation of the tumors.

Dr. Parada and his research group, including former UT Southwestern postdoctoral researcher and lead author Dr. Yuan Zhu, now at the University of Michigan Medical School, developed a strain of genetically engineered mice that served as models for their human brain-cancer studies and allowed researchers to track down the origins of such tumors. The mice lacked a tumor suppressor gene called p53 and also had a mutated version of another tumor suppressor gene called NF1. The mutated NF1 resulted in an increase in a biochemical reaction called Ras signaling, which has been implicated in the initiation of some cancers.

As infants, the mutant mice showed no sign of cancer, but as they grew older, they all developed brain tumors. By observing and evaluating "snapshots" of changes in the mouse brains over time, Dr. Parada’s research team determined that the tumors originated in neural stem cells. Those cells that became cancerous then migrated to other areas of the brain and caused tumors.

Previous research has demonstrated that adult neural stem cells are isolated in only a few regions of the mammalian brain, with the highest densities of such cells occurring in the hippocampus, an area important for learning and memory, and the subventricular zone of the forebrain.

The UT Southwestern researchers found that stem cells in the subventricular zone gave rise to malignant astrocytoma in the genetically engineered mice.

"While our study cannot rule out alternative explanations for the initiation of astrocytoma, the identification of the subventricular zone as the site of tumor origin in our models may have implications on therapeutic strategies for preventing and treating a subset of human malignant astrocytomas," Dr. Parada said. "Our results challenge current dogma, which assumes that tumors of this type arise from glial cells located throughout the brain."

The results offer an explanation for why current treatment for malignant astrocytoma in humans ultimately fails. Strategies that focus only on treating localized lesions would not be sufficient to eradicate tumor cells because these cells may eventually be replenished from the cell pool within the subventricular zone, the researchers said.

They also determined that inactivation of both p53 and NF1 is sufficient to initiate the formation of the brain cancer, and that the timing of the inactivation of each gene is critical. For the malignant astrocytoma to begin forming, p53 inactivation must either precede or coincide with the increase in Ras signaling associated with the loss of NF1.

Stem cells are unspecialized cells, capable of dividing and renewing themselves for long periods of time. They can give rise to many types of specialized cells, such as blood, nerve and muscle cells. While embryonic stem cells, which are derived from very early embryos, are capable of generating all types of cells in the body during normal development, adult stem cells have lost this potential. Adult stem cells differentiate to produce cells from the tissue where they originate.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>