Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain tumors may originate with neural stem cells

16.08.2005


Researchers at UT Southwestern Medical Center have determined that stem cells in a certain region of the brain may be the source of a particular type of incurable brain tumor and may be implicated in other types of brain cancers as well.



The research, conducted in mice, appears in the August issue of the journal Cancer Cell. The findings support growing evidence that adult stem cells may play a role in the development of some forms of cancer, said Dr. Luis Parada, senior author on the paper and director of the Center for Developmental Biology and the Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration at UT Southwestern.

"Continued research into the biology of adult stem cells will aid in the understanding of how cancers originate and develop and may lead to possible new therapies for treating aggressive, currently incurable brain tumors," said Dr. Parada.


Malignant astrocytoma, or glioma, is one of the most common types of brain tumor in adults. The tumors are thought to arise from glial cells, which are non-nerve cells that provide support and nutrition to cells of the nervous system.

Because these incurable cancers generally are not detected until they are advanced, when symptoms have begun to develop, scientists have been unsure where, or what, initiates the process of uncontrolled cell replication that leads to the formation of the tumors.

Dr. Parada and his research group, including former UT Southwestern postdoctoral researcher and lead author Dr. Yuan Zhu, now at the University of Michigan Medical School, developed a strain of genetically engineered mice that served as models for their human brain-cancer studies and allowed researchers to track down the origins of such tumors. The mice lacked a tumor suppressor gene called p53 and also had a mutated version of another tumor suppressor gene called NF1. The mutated NF1 resulted in an increase in a biochemical reaction called Ras signaling, which has been implicated in the initiation of some cancers.

As infants, the mutant mice showed no sign of cancer, but as they grew older, they all developed brain tumors. By observing and evaluating "snapshots" of changes in the mouse brains over time, Dr. Parada’s research team determined that the tumors originated in neural stem cells. Those cells that became cancerous then migrated to other areas of the brain and caused tumors.

Previous research has demonstrated that adult neural stem cells are isolated in only a few regions of the mammalian brain, with the highest densities of such cells occurring in the hippocampus, an area important for learning and memory, and the subventricular zone of the forebrain.

The UT Southwestern researchers found that stem cells in the subventricular zone gave rise to malignant astrocytoma in the genetically engineered mice.

"While our study cannot rule out alternative explanations for the initiation of astrocytoma, the identification of the subventricular zone as the site of tumor origin in our models may have implications on therapeutic strategies for preventing and treating a subset of human malignant astrocytomas," Dr. Parada said. "Our results challenge current dogma, which assumes that tumors of this type arise from glial cells located throughout the brain."

The results offer an explanation for why current treatment for malignant astrocytoma in humans ultimately fails. Strategies that focus only on treating localized lesions would not be sufficient to eradicate tumor cells because these cells may eventually be replenished from the cell pool within the subventricular zone, the researchers said.

They also determined that inactivation of both p53 and NF1 is sufficient to initiate the formation of the brain cancer, and that the timing of the inactivation of each gene is critical. For the malignant astrocytoma to begin forming, p53 inactivation must either precede or coincide with the increase in Ras signaling associated with the loss of NF1.

Stem cells are unspecialized cells, capable of dividing and renewing themselves for long periods of time. They can give rise to many types of specialized cells, such as blood, nerve and muscle cells. While embryonic stem cells, which are derived from very early embryos, are capable of generating all types of cells in the body during normal development, adult stem cells have lost this potential. Adult stem cells differentiate to produce cells from the tissue where they originate.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>