Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

e-Science methods reveal new insights into antibiotic resistance

16.08.2005


Large-scale computer simulations have pinpointed a tiny change in molecular structure that could account for drug resistance in Streptomices pneumoniae, the organism that causes childhood pneumonia and claims 3.5 million lives a year, mainly in developing countries. Such knowledge could be invaluable in designing new drugs that are effective against the drug resistant strain.



Experiments to find out how changes at the molecular level are causing this resistance are difficult and, so far, have not been done. Now, however, Peter Coveney and co-workers from UCL and Queen Mary, University of London have investigated the problem using computer modelling techniques. Their findings are amongst several outputs of the UK e-Science programme that are discussed in a special Theme Issue of Philosophical Transactions of the Royal Society A* which is published on 15 August.

They took experimental data gathered from other organisms to build computer models of the sites where drug molecules interact with an organism’s protein molecules. They then ran simulations and visualised what happens when a drug molecule approaches each site for both normal and drug-resistant strains of S. pneumoniae.


The simulations and visualisations exploited highly scalable parallel code running on the UK’s national supercomputing facilities. “Without the use of e-Science methods, they would have taken months to perform and quite probably would never have been done. With these new methods, each simulation took just 12 hours,” says Professor Coveney. So far, life scientists have had limited access to and interest in such high performance computing resources; with Grid computing, these resources are becoming more readily accessible.

Professor Coveney and colleagues could see that a very small, but subtle, difference in structure between the normal and drug resistant strains was to blame for the drug resistance. In the normal strain, a drug molecule binds tightly to the site, but in the drug resistant strain it approaches and then drifts slowly away. If the results of the simulation are borne out by experiment, they could point the way to new drugs to combat disease.

*Large-scale molecular dynamics simulation of native and mutant dihydropteroate synthase-sulfanimide complexes suggests the basis of dihydropteroate synthase drug resistance by F.Giordanetto, P. W. Fowler, M Saqi and P. V. Coveney Philosophical Transactions of the Royal Society A 363 1833 (15 August 2005)

Judy Redfearn | alfa
Further information:
http://www.epsrc.ac.uk
http://www.pubs.royalsoc.ac.uk/phil_trans_phys_scientificgrid.shtml
http://www.rcuk.ac.uk/escience/news/flowsim.asp

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>