Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Role of microRNA identified in breast cancer

15.08.2005


Scientists mining vast, largely unexplored regions of the human genome have identified a small handful of mini-molecules that play a major role in the development of cancer and perhaps many other diseases.



This newly identified set of molecules is called microRNA (miRNA), a collection of hundreds of snippets of non-coding RNA – typically no more than 22 nucleotides in length – that may comprise a master network controlling genes and protein production throughout the body, according to scientists in Ohio State University’s Comprehensive Cancer Center.

The researchers were the first to define how miRNA malfunctions in some forms of leukemia and lymphoma, and now have discovered how it works in breast cancer. More importantly, they say the miRNA “signature” in breast cancer is directly linked to several biological features that physicians routinely use to diagnose and appropriately treat the disease.


The findings appear in the Aug. 15 issue of Cancer Research.

“MiRNA is opening up a whole new way of understanding carcinogenesis,” says Carlo Croce, professor and chair of the department of molecular virology, immunology and medical genetics at Ohio State and the senior author of the study.

Traditional science holds that a specific stretch of DNA, or gene, encodes a sequence of messenger RNA that in turn creates instructions for the cell to make a particular protein. Cancer arises when there are mutations, deletions or other alterations in that initiating gene.

But what governs the entire process? A growing number of researchers like Croce believe that miRNA may play a major role. In contrast to regular RNA, miRNA does not code for protein production. Instead, it causes the destruction of coding RNA directly, or garbles its translational activity so proper protein production cannot take place.

MiRNA was first discovered almost 15 years ago in studies of roundworms, and since then, it has been found throughout plant and animal genomes. Because it becomes active early on in development and appears to be tissue-specific, researchers believe miRNA plays a fundamental role throughout an organism’s lifespan.

Scientists have identified over 200 distinct miRNAs, but Croce feels there may be hundreds more, and adds that researchers are just beginning to understand what they do. “Some of the breast cancer-specific miRNA we identified appear to act like tumor suppressors, and others appear to act like oncogenes, encouraging tumor growth.”

Interestingly, earlier research in Croce’s laboratory revealed that the majority of miRNA genes in humans are located near chromosomal sites that are especially vulnerable to alteration, a finding that leads him to believe that the role of miRNA in cancer is underestimated.

Croce, along with colleagues at Ohio State, Thomas Jefferson University and three cancer centers in Italy, used a microarray containing all known miRNA to examine miRNA activity in 76 breast tumors. They compared the findings to a microarray analysis of 34 samples of normal breast tissue.

They found 29 miRNAs that are significantly deregulated in breast cancer (some were over-expressed and others were under-expressed) and discovered that only five members of that group (identified as miR10b, miR-125b, miR-145, miR-21 and miR-155) were needed to successfully separate normal tissue from cancerous tissue 100 percent of the time.

They also conducted multiple tests designed to reveal any links between the newly identified expression pattern and important clinical features of the breast cancer, such as the type of the cancer - lobular versus ductal, estrogen and progesterone receptor status, lymph node metastasis, vascular invasion, proliferation index, and presence of two genes that can play a role in tumor growth, HER2 and p53.

They found that miRNA expression was correlated with breast tumors’ hormone status as well as its metastatic, invasive and proliferative potential.

“This leaves little doubt that aberrant expression of miRNA is involved in the development of breast cancer,” says Croce, adding that this information and the results of related studies already under way should offer valuable information for physicians as well as for researchers designing new treatments.

The National Cancer Institute and a Kimmel Scholar Award supported the study, as well as grants from the Associazione Italiana per la Ricerca and Cancro; Ministero dell’Istruzione, dell’Universita e della Ricera Programma Post-genoma; Ministero della Salute Italiano; and Progetto CAN2005-Comitato dei Sostenitori.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>