Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Role of microRNA identified in breast cancer

15.08.2005


Scientists mining vast, largely unexplored regions of the human genome have identified a small handful of mini-molecules that play a major role in the development of cancer and perhaps many other diseases.



This newly identified set of molecules is called microRNA (miRNA), a collection of hundreds of snippets of non-coding RNA – typically no more than 22 nucleotides in length – that may comprise a master network controlling genes and protein production throughout the body, according to scientists in Ohio State University’s Comprehensive Cancer Center.

The researchers were the first to define how miRNA malfunctions in some forms of leukemia and lymphoma, and now have discovered how it works in breast cancer. More importantly, they say the miRNA “signature” in breast cancer is directly linked to several biological features that physicians routinely use to diagnose and appropriately treat the disease.


The findings appear in the Aug. 15 issue of Cancer Research.

“MiRNA is opening up a whole new way of understanding carcinogenesis,” says Carlo Croce, professor and chair of the department of molecular virology, immunology and medical genetics at Ohio State and the senior author of the study.

Traditional science holds that a specific stretch of DNA, or gene, encodes a sequence of messenger RNA that in turn creates instructions for the cell to make a particular protein. Cancer arises when there are mutations, deletions or other alterations in that initiating gene.

But what governs the entire process? A growing number of researchers like Croce believe that miRNA may play a major role. In contrast to regular RNA, miRNA does not code for protein production. Instead, it causes the destruction of coding RNA directly, or garbles its translational activity so proper protein production cannot take place.

MiRNA was first discovered almost 15 years ago in studies of roundworms, and since then, it has been found throughout plant and animal genomes. Because it becomes active early on in development and appears to be tissue-specific, researchers believe miRNA plays a fundamental role throughout an organism’s lifespan.

Scientists have identified over 200 distinct miRNAs, but Croce feels there may be hundreds more, and adds that researchers are just beginning to understand what they do. “Some of the breast cancer-specific miRNA we identified appear to act like tumor suppressors, and others appear to act like oncogenes, encouraging tumor growth.”

Interestingly, earlier research in Croce’s laboratory revealed that the majority of miRNA genes in humans are located near chromosomal sites that are especially vulnerable to alteration, a finding that leads him to believe that the role of miRNA in cancer is underestimated.

Croce, along with colleagues at Ohio State, Thomas Jefferson University and three cancer centers in Italy, used a microarray containing all known miRNA to examine miRNA activity in 76 breast tumors. They compared the findings to a microarray analysis of 34 samples of normal breast tissue.

They found 29 miRNAs that are significantly deregulated in breast cancer (some were over-expressed and others were under-expressed) and discovered that only five members of that group (identified as miR10b, miR-125b, miR-145, miR-21 and miR-155) were needed to successfully separate normal tissue from cancerous tissue 100 percent of the time.

They also conducted multiple tests designed to reveal any links between the newly identified expression pattern and important clinical features of the breast cancer, such as the type of the cancer - lobular versus ductal, estrogen and progesterone receptor status, lymph node metastasis, vascular invasion, proliferation index, and presence of two genes that can play a role in tumor growth, HER2 and p53.

They found that miRNA expression was correlated with breast tumors’ hormone status as well as its metastatic, invasive and proliferative potential.

“This leaves little doubt that aberrant expression of miRNA is involved in the development of breast cancer,” says Croce, adding that this information and the results of related studies already under way should offer valuable information for physicians as well as for researchers designing new treatments.

The National Cancer Institute and a Kimmel Scholar Award supported the study, as well as grants from the Associazione Italiana per la Ricerca and Cancro; Ministero dell’Istruzione, dell’Universita e della Ricera Programma Post-genoma; Ministero della Salute Italiano; and Progetto CAN2005-Comitato dei Sostenitori.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>