Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists link vascular gene to Alzheimer’s disease

15.08.2005


Scientists at the University of Rochester Medical Center have discovered a link between a prominent developmental gene and neurovascular dysfunction in Alzheimer’s disease.

The gene plays a major role in the growth and remodeling of vascular systems. But, in brain cells of people with Alzheimer’s disease, expression of the gene is low, the scientists found, revealing a new piece of the Alzheimer’s puzzle.

In laboratory studies, the scientists also showed that restoration of the gene expression level in the human brain cells stimulated the formation of new blood vessels. It also increased the level of a protein that removes amyloid beta peptide, the toxin that builds up in brain tissue in Alzheimer’s disease.



In further studies, the scientists, led by Berislav Zlokovic, M.D., Ph.D., deleted one copy of the gene in mice, creating echoes of the damage of Alzheimer’s, including reduced ability to grow blood vessels in the brain and impaired clearance of amyloid beta.

"This is a new pathway for the study and treatment of Alzheimer’s disease," said Zlokovic. "This gene could be a therapeutic target. If we can stop this cycle, we could slow or stop the progression of the neuronal component of this disease."

An article by Zlokovic and his team detailing the research findings appears Sunday Aug. 14 in the online version of Nature Medicine. The article will be published in the September print edition of Nature Medicine.

Zlokovic is a professor in the University of Rochester Medical Center’s Department of Neurosurgery and director of the Frank P. Smith Laboratories for Neuroscience and Neurosurgical Research.

The gene targeted in the research is a homeobox gene known as MEOX2 and also as GAX. A homeobox gene encodes proteins that determine development. Zlokovic calls it a "big boss."

The scientists studied human brain endothelial cells taken from autopsy samples from people with Alzheimer’s. They found that expression of MEOX2, or mesenchyme homeobox 2, is low in the cells of those with Alzheimer’s.

"The cells with low levels can’t form any kind of vascular system or any kind of network," Zlokovic said. "They just start dying."

In restoring expression of the gene, the Rochester scientists showed for the first time that it suppresses a specific transcription factor. When the expression of MEOX2 is low, the factor "rampages" and allows apoptosis or programmed cell death in the brain vascular system, Zlokovic said.

When MEOX2 expression is low, the research also showed that a protein that helps with the clearance of amyloid beta is suppressed.

Zlokovic views the findings reported in Nature Medicine as support for his belief that Alzheimer’s is a neurovascular disease.

"If you find a problem in the brain, it doesn’t necessarily mean that it started in the brain," he said. "It’s not that neuronal injury is not important. It’s that other things are more important."

But Zlokovic said that it is not clear yet whether the low expression of the gene results in the death of brain cells and Alzheimer’s disease or that the disease in neurons results in the low expression of the disease.

"But if we can restore the dysfunctional gene, we might be able to slow or stop the disease wherever it started," Zlokovic said.

Michael Wentzel | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>