Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists link vascular gene to Alzheimer’s disease

15.08.2005


Scientists at the University of Rochester Medical Center have discovered a link between a prominent developmental gene and neurovascular dysfunction in Alzheimer’s disease.

The gene plays a major role in the growth and remodeling of vascular systems. But, in brain cells of people with Alzheimer’s disease, expression of the gene is low, the scientists found, revealing a new piece of the Alzheimer’s puzzle.

In laboratory studies, the scientists also showed that restoration of the gene expression level in the human brain cells stimulated the formation of new blood vessels. It also increased the level of a protein that removes amyloid beta peptide, the toxin that builds up in brain tissue in Alzheimer’s disease.



In further studies, the scientists, led by Berislav Zlokovic, M.D., Ph.D., deleted one copy of the gene in mice, creating echoes of the damage of Alzheimer’s, including reduced ability to grow blood vessels in the brain and impaired clearance of amyloid beta.

"This is a new pathway for the study and treatment of Alzheimer’s disease," said Zlokovic. "This gene could be a therapeutic target. If we can stop this cycle, we could slow or stop the progression of the neuronal component of this disease."

An article by Zlokovic and his team detailing the research findings appears Sunday Aug. 14 in the online version of Nature Medicine. The article will be published in the September print edition of Nature Medicine.

Zlokovic is a professor in the University of Rochester Medical Center’s Department of Neurosurgery and director of the Frank P. Smith Laboratories for Neuroscience and Neurosurgical Research.

The gene targeted in the research is a homeobox gene known as MEOX2 and also as GAX. A homeobox gene encodes proteins that determine development. Zlokovic calls it a "big boss."

The scientists studied human brain endothelial cells taken from autopsy samples from people with Alzheimer’s. They found that expression of MEOX2, or mesenchyme homeobox 2, is low in the cells of those with Alzheimer’s.

"The cells with low levels can’t form any kind of vascular system or any kind of network," Zlokovic said. "They just start dying."

In restoring expression of the gene, the Rochester scientists showed for the first time that it suppresses a specific transcription factor. When the expression of MEOX2 is low, the factor "rampages" and allows apoptosis or programmed cell death in the brain vascular system, Zlokovic said.

When MEOX2 expression is low, the research also showed that a protein that helps with the clearance of amyloid beta is suppressed.

Zlokovic views the findings reported in Nature Medicine as support for his belief that Alzheimer’s is a neurovascular disease.

"If you find a problem in the brain, it doesn’t necessarily mean that it started in the brain," he said. "It’s not that neuronal injury is not important. It’s that other things are more important."

But Zlokovic said that it is not clear yet whether the low expression of the gene results in the death of brain cells and Alzheimer’s disease or that the disease in neurons results in the low expression of the disease.

"But if we can restore the dysfunctional gene, we might be able to slow or stop the disease wherever it started," Zlokovic said.

Michael Wentzel | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>