Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A powerful new tool for decoding gene functions in mammals and Man

12.08.2005


A collaborative project between American and Chinese researchers developed a way to study the function of genes in mice and man by using a moveable genetic element from moths, according to a report in the journal Cell.



"We know how many genes are in the mammalian genome, but that does not tell us how they carry out their jobs," said senior author Tian Xu, Professor and Vice Chair of Genetics at Yale University School of Medicine and a Howard Hughes Medical Institute Investigator. "We have found a way to systematically inactivate genes in the mouse genome so we can understand the functions of these genes."

After sequencing the human and mouse genomes, many scientists have shifted their attention to determining the function of all of those genes. The strategy is to mutate each gene, to observe the consequences, and investigate the molecular mechanisms. In the past two decades, only a small percentage of the genes shared by mice and humans have been analyzed in detail.


Genetic elements, called transposons, move from place to place in the DNA and allow material to be inserted or relocated. Bacteria swap antibiotic-resistance genes with transposons. Scientists have tailored this natural gene shuffling technique to insert genes and to mutate genes in fruit flies and simple organisms to learn the function of individual genes.

Transposons have proved to be valuable genetic tools for many organisms, but not for vertebrates and mammals. General application in mouse genetics was limited as they travel at low frequencies to limited locations, and had little capacity to carry DNA fragments.It tookXu’s team six years to develop an efficient tool for genetic manipulations in vertebrates and mammals.

Xu and his colleagues at Fudan University in Shanghai, China finally chose a transposon called piggyBac that was originally identified in the cabbage looper moth. They discovered that it was stable and versatile in mouse and human cell lines , providing a new way to genetically manipulate mammalian cells. It also worked in mice even when it carried a couple of extra genes.

Xu’s team made it easier to see the genes piggyBac associates with by adding a red fluorescent protein and an enzyme that changes the coat color of a white mouse to grey or black. The genes carried by the transposons have been stably inherited and expressed through five generations.

"The transposon acts as a genetic beacon, so researchers can easily track its location without having to sequence the entire genome," said Xu. In their experiments, piggyBac incorporated into many chromosomes in human and mouse cells. PiggyBac can be removed from a mouse lineage by breeding with another mouse that has the enzyme to excise the transposon.

This technique is a powerful new tool for generating transgenic animals for vertebrates and mammals, and a potential new vehicle for human gene therapy.Although piggyBac inserts itself randomly into the DNA, it most often locates in genes, making it useful for mutating genes and thus, revealing gene functions.

"This work represents another major step forward from Tian’s laboratory. It teaches us how transposons work in mammalian systems, while providing a tool for the systematic study of gene function throughout the human and mouse genomes."

In three months, the two graduate students who worked on the project generated mice mutating 75 different genes. Xu, Min Han, an HHMI investigator at the University of Colorado, Boulder, and Yuan Zhuang of Duke University, and their colleagues at Fudan University are in the process of scaling up piggyBac for the Mouse Functional Genome Project, which is aiming to mutate the majority of mouse genes at a state-of-the-art research facility in China to systematically understand the functions of the mammalian genes.

Xu expects the technique to be particularly useful for identifying genes and drug targets for diseases such as cancers and diabetes.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>