Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescence spectroscopy proves capable of detecting inflammatory cells in blood vessels

12.08.2005


Because atherosclerotic plaque typically builds up without symptoms and leads to more than 1 million deaths in America each year, the search is on to develop early detection devices that will enable physicians to offer treatment before the disease progresses to advanced stages.



Now, in a study involving laboratory rabbits, a device that stimulates, collects and measures light emissions from body tissues has been able to detect the presence of inflammatory cells that are associated with critical atherosclerotic plaques in humans – plaques that are vulnerable to rupture. The study is described in the August 2005 issue of the journal Atherosclerosis.

Recent atherosclerosis research has found that the composition of plaque and its "vulnerability" to rupture may be more significant than the degree of arterial blockage as a precursor to heart attack and stroke. The lining (intima) of a normal artery consists of several thin layers of cells and connective tissue. Segments containing stable atherosclerotic plaque become thickened with collagen while sections of vulnerable plaque are infiltrated by macrophages. In humans, the inflammatory process weakens the plaque’s thin, fibrous cap, often leading to rupture of the plaque and blockage of blood vessels.


An experimental time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) device developed by researchers at Cedars-Sinai Medical Center was used to detect the presence of inflammatory cells in the aortas of animals, with results compared to those from pathology studies.

"This study demonstrates that TR-LIFS can be used to identify macrophage infiltration in the fibrous cap, a key marker of plaque inflammation," said Laura Marcu, Ph.D., director of the Biophotonics Research and Technology Development Laboratory in Cedars-Sinai’s Department of Surgery. "While previous studies have reported that fluorescence spectroscopy could identify atherosclerotic plaques, we believe this is the first to demonstrate that a fluorescence-based technique is also sensitive to differences in macrophage content versus collagen content. We found that intima rich in macrophages can be distinguished from intima rich in collagen with high sensitivity and specificity,"

Marcu led the study with colleagues from Cedars-Sinai, the University of California, Los Angeles, and Johns Hopkins University.

Laser-induced fluorescence spectroscopy is based on the fact that when molecules in cells are stimulated by light, they respond by becoming excited and re-emitting light of varying colors. Just as a prism splits white light into a full spectrum of color, laser light focused on tissues is re-emitted in colors that are determined by the properties of the molecules. When these emissions are collected and analyzed (fluorescence spectroscopy), they provide information about the molecular and biochemical status of the tissue.

Time resolution adds a greater degree of specificity, measuring not only the wavelength of the emission but the time that molecules remain in the excited state before returning to the ground state. This information is valuable because some emissions overlap on the light spectrum but have different "decay" characteristics.

"The goal of our current research is to define how well the TR-LIFS technique can detect the features associated with plaque vulnerability, but our long-term objective is to develop a minimally invasive, intravascular probe that will monitor plaque over time or guide therapeutic interventions to prevent plaque rupture," Marcu said.

The TR-LIFS system consists of a laser, a two-way fiber-optic probe through which the laser light is delivered to the tissue and the fluorescence is collected, a spectrometer, a digital oscilloscope, and a computer workstation that provides user interface, coordination of components and interpretation software.

Sandy Van | EurekAlert!
Further information:
http://www.cedars-sinai.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>