Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could alter field of mouse genetics

12.08.2005


Howard Hughes Medical Institute researchers have harnessed a mobile gene from the cabbage looper moth and modified it for routine use to determine the function of genes in mice and other vertebrates. If the new tool works as they expect, it will speed understanding of genes involved in human biology and disease and accelerate the search for effective new therapies.



The researchers report their study in the August 12, 2005, issue of the journal Cell.

Certain genes or genetic elements, called transposons, can hop from one place to another in the genomes of various organisms. In people, this genetic shuffling ensures that the immune system can generate a huge assortment of protective antibodies. Bacteria use the mechanism to swap antibiotic-resistance genes among themselves. And scientists have “borrowed” and adapted the same handy technique to insert genes and mutate genes in fruit flies and simpler organisms to learn the function of individual genes.


“We know how many genes are in the genome, but that does not tell us how they carry out their jobs,” said senior author Tian Xu, a Howard Hughes Medical Institute (HHMI) investigator at Yale University School of Medicine. “We have found a way to systematically inactivate genes in the mouse genome so we understand the functions of these genes.”

With a large inventory of genome sequences in hand, over the last few years many scientists have shifted their attention to determining the function of all of those genes. The strategy is as systematic as the genome sequencing projects — mutate each gene, observe the consequences, and investigate the molecular mechanisms. In the past two decades, only about 3,000 of the estimated 25,000 genes shared by mice and humans have been analyzed in detail, Xu said. A reliable gene-transposing tool could make that job much easier and quicker.

Xu and his colleagues at Fudan University in Shanghai, China, began their studies with a transposon called piggyBac. With the help of a partner enzyme, piggyBac can reliably and efficiently insert itself into the genomes of human and mouse cell lines and in mouse embryos, even while carrying a couple of extra genes, the study shows.

“This paper could be a very important advance,” said Allan Spradling, an HHMI investigator at Carnegie Institution in Baltimore. “It really comes down to its application in practice — how well it works, day in and day out. It’s fairly rare to get a transposon that works on a large scale in an effective way. This looks very promising.”

Transposons have been used in mice before. But one such active transposon, Sleeping Beauty, does not appear to travel widely among the chromosomes and cannot carry larger fragments of DNA. As a result, scientists have been searching for stable, versatile transposons that can insert randomly in many different mammalian chromosomes and also carry genes into mice and other organisms that are more closely related to people.

PiggyBac was originally identified in the cabbage looper moth. Unlike many mobile genetic units that work only in their native hosts, piggyBac can flit around the genomes of other insects. For that reason, it has been used experimentally as a tool to control pest insects from moths to flies and mosquitoes. The transposon has also seen heavy use in the genetic workhorse, Drosophila, where it is perhaps second only to the P element, whose talent to engineer changes in the fly’s genome was co-discovered by Spradling 23 years ago. The P element has since become a backbone of modern fruit fly genetics.

Researchers in Xu’s group first tried to adapt the P element for use in mice and to improve the efficiency of the Sleeping Beauty transposon system. When those efforts failed, they chose piggyBac because its enzyme looked and acted differently and it had a good track record in a range of insects.

In their experiments, piggyBac incorporated itself into many chromosomes in human and mouse cells. It also carried other genes effectively. Inserted into mouse embryos, the transposon and its cargo was inherited through five generations. PiggyBac can also be removed from its place in the family tree by breeding a mouse with another that carries the enzyme necessary to excise the jumping gene.

“We do not know why the P element did not work in mammalian organisms, and we do not know why this particular one works,” Xu said, “but this system is a dream tool for geneticists working with vertebrates and mammals.”

PiggyBac inserts randomly into the genome, with a clear preference for genes. This bodes well for its use in mutating genes and for identifying unrecognized genes in places of the genome that have been especially difficult to sequence. Furthermore, the markers it carries make it easy to find. In Xu’s lab, the jumping gene carried red fluorescent protein and an enzyme that changes the coat color of a white mouse to grey or black. The transposon acts as a genetic beacon, so researchers can easily track its location without having to sequence the entire genome, as can happen with the chemical mutagen technique.

In three months, the two graduate students who led the project generated knockout mice for each of 75 different genes. Xu, Min Han, an HHMI investigator at the University of Colorado, Boulder, and Yuan Zhuang of Duke University, and their colleagues at Fudan University are in the process of scaling up piggyBac for the Mouse Functional Genome Project, which is aiming to mutate the majority of mouse genes at a state-of-the-art research facility in China.

Xu expects the technique to be particularly useful for animal models of genetically complex diseases, such as diabetes, where many genes contribute to the disease process.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>