Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could alter field of mouse genetics

12.08.2005


Howard Hughes Medical Institute researchers have harnessed a mobile gene from the cabbage looper moth and modified it for routine use to determine the function of genes in mice and other vertebrates. If the new tool works as they expect, it will speed understanding of genes involved in human biology and disease and accelerate the search for effective new therapies.



The researchers report their study in the August 12, 2005, issue of the journal Cell.

Certain genes or genetic elements, called transposons, can hop from one place to another in the genomes of various organisms. In people, this genetic shuffling ensures that the immune system can generate a huge assortment of protective antibodies. Bacteria use the mechanism to swap antibiotic-resistance genes among themselves. And scientists have “borrowed” and adapted the same handy technique to insert genes and mutate genes in fruit flies and simpler organisms to learn the function of individual genes.


“We know how many genes are in the genome, but that does not tell us how they carry out their jobs,” said senior author Tian Xu, a Howard Hughes Medical Institute (HHMI) investigator at Yale University School of Medicine. “We have found a way to systematically inactivate genes in the mouse genome so we understand the functions of these genes.”

With a large inventory of genome sequences in hand, over the last few years many scientists have shifted their attention to determining the function of all of those genes. The strategy is as systematic as the genome sequencing projects — mutate each gene, observe the consequences, and investigate the molecular mechanisms. In the past two decades, only about 3,000 of the estimated 25,000 genes shared by mice and humans have been analyzed in detail, Xu said. A reliable gene-transposing tool could make that job much easier and quicker.

Xu and his colleagues at Fudan University in Shanghai, China, began their studies with a transposon called piggyBac. With the help of a partner enzyme, piggyBac can reliably and efficiently insert itself into the genomes of human and mouse cell lines and in mouse embryos, even while carrying a couple of extra genes, the study shows.

“This paper could be a very important advance,” said Allan Spradling, an HHMI investigator at Carnegie Institution in Baltimore. “It really comes down to its application in practice — how well it works, day in and day out. It’s fairly rare to get a transposon that works on a large scale in an effective way. This looks very promising.”

Transposons have been used in mice before. But one such active transposon, Sleeping Beauty, does not appear to travel widely among the chromosomes and cannot carry larger fragments of DNA. As a result, scientists have been searching for stable, versatile transposons that can insert randomly in many different mammalian chromosomes and also carry genes into mice and other organisms that are more closely related to people.

PiggyBac was originally identified in the cabbage looper moth. Unlike many mobile genetic units that work only in their native hosts, piggyBac can flit around the genomes of other insects. For that reason, it has been used experimentally as a tool to control pest insects from moths to flies and mosquitoes. The transposon has also seen heavy use in the genetic workhorse, Drosophila, where it is perhaps second only to the P element, whose talent to engineer changes in the fly’s genome was co-discovered by Spradling 23 years ago. The P element has since become a backbone of modern fruit fly genetics.

Researchers in Xu’s group first tried to adapt the P element for use in mice and to improve the efficiency of the Sleeping Beauty transposon system. When those efforts failed, they chose piggyBac because its enzyme looked and acted differently and it had a good track record in a range of insects.

In their experiments, piggyBac incorporated itself into many chromosomes in human and mouse cells. It also carried other genes effectively. Inserted into mouse embryos, the transposon and its cargo was inherited through five generations. PiggyBac can also be removed from its place in the family tree by breeding a mouse with another that carries the enzyme necessary to excise the jumping gene.

“We do not know why the P element did not work in mammalian organisms, and we do not know why this particular one works,” Xu said, “but this system is a dream tool for geneticists working with vertebrates and mammals.”

PiggyBac inserts randomly into the genome, with a clear preference for genes. This bodes well for its use in mutating genes and for identifying unrecognized genes in places of the genome that have been especially difficult to sequence. Furthermore, the markers it carries make it easy to find. In Xu’s lab, the jumping gene carried red fluorescent protein and an enzyme that changes the coat color of a white mouse to grey or black. The transposon acts as a genetic beacon, so researchers can easily track its location without having to sequence the entire genome, as can happen with the chemical mutagen technique.

In three months, the two graduate students who led the project generated knockout mice for each of 75 different genes. Xu, Min Han, an HHMI investigator at the University of Colorado, Boulder, and Yuan Zhuang of Duke University, and their colleagues at Fudan University are in the process of scaling up piggyBac for the Mouse Functional Genome Project, which is aiming to mutate the majority of mouse genes at a state-of-the-art research facility in China.

Xu expects the technique to be particularly useful for animal models of genetically complex diseases, such as diabetes, where many genes contribute to the disease process.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>