Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find how some antibiotics kill bacteria

12.08.2005


Researchers have uncovered how members of one family of antibiotics kill bacteria that make people sick.



This new knowledge may help drug developers make slight changes to these antibiotics to make them more effective against drug-resistant strains of bacteria, said Irina Artsimovitch, a study co-author and an assistant professor of microbiology at Ohio State University.

The antibiotics studied belong to the rifamycin family. Until now, researchers believed that these antibiotics and their derivatives (there are at least a thousand) all killed bacteria in the same way.


But the new study used recent advances in X-ray imagery to obtain the highest resolution figures ever available of how rifamycins bind to their targets. With these new images, the researchers found – for the first time - that these drugs remove a key component of the bacteria they attack. The researchers were also surprised to find that different rifamycins bring about this same result in slightly different ways.

“This is a major revision of how we thought these antibiotics functioned,” Artsimovitch said. “The new molecular details help explain why bacteria that are resistant to one kind of rifamycin antibiotic might still be sensitive to another.

“That may help to narrow down the search for new synthetic derivatives to conquer resistance altogether.”

The study appears in the current issue of the journal Cell.

Ryfamycin antibiotics are one of the first-line treatments for tuberculosis, a disease that is on the rise worldwide. The drugs are also relatively inexpensive to make, have a long shelf life and are nearly non-toxic to cells other than the pathogenic ones they target.

The problem with them, though, is the rampant development of bacterial resistance.

“There is a voluntary restriction on the use of rifamycins in treating infections other than tuberculosis and meningitis due to the fear of spread of resistant mutations,” said Vladimir Svetlov, a study co-author and a research associate in microbiology at Ohio State.

“Those mutations could render these antibiotics ineffective against most of the serious health threats that they are being used to manage,” he continued.

All rifamycins belong to one of two structural classes. The researchers used two clinically important rifamycins – rifapentin and rifabutin – that represent each structural class. They obtained samples of the antibiotics in their respective crystal structure form. Crystal structures are sets of atoms arranged in ways that are unique to a particular substance.

The researchers used a technique called X-ray crystallography to determine where individual atoms are located within a crystal structure. From this information they then created high-resolution computer models of each antibiotic, approximating what each substance looked like on the atomic level and exactly how each bound to and affected a key component of bacteria called RNA polymerase.

RNA polymerase is the machinery that keeps bacteria going – a bacterium cannot carry out gene expression without it. Cut off gene expression and bacteria are dead. In their study, the researchers looked at the effects of rifapentin and rifabutin on E. coli RNA polymerase.

With recent advances in X-ray crystallographic studies of RNA polymerase, the researchers could determine exactly where and how both antibiotics bound to RNA polymerase in E. coli, and what it did to that polymerase as a result.

The results provide new evidence of how rifamycins inhibit pathogenic bacteria. That finding applies to all rifamycins, Artsimovitch said.

The study showed that rifamyacins inhibit pathogenic bacteria by removing the crucial magnesium ion (Mg2+) from a bacterium’s RNA polymerase.

“Removing this ion is like removing spark plugs from an engine,” Artsimovitch said. “The car may look fine, but it won’t run.

“Until we could look under polymerase’s molecular ‘hood’ we couldn’t see what the problem was,” she said. “We never suspected that removing this ion was what killed rifamycin-sensitive bacteria. But the resolution of previous atomic structures wasn’t sufficient enough to see that.”

The higher-resolution images also showed that rifapentin and rifabutin each bind just a little differently to E. coli, but still bring about the same results.

The answer to creating a new breed of bacteria-resistant antibiotics may lie in these variations in binding.

“From these findings we can suggest how rifamycins that are currently used in therapy can be improved to be effective even against existing resistant strains of bacteria,” Artsimovitch said

Rifamycins are what drug companies call “broad-spectrum antibiotics.” Not only are they effective against tuberculosis, they also act against a variety of other pathogens including Neisseria meningitidis, the bacterium that causes one form of meningitis; Helicobacter pylori, which causes stomach ulcers; and even some parasitic worms by eliminating the symbiotic bacteria parasites depend on.

“It’s the kind of drug the pharmaceutical business wants to produce,” Artsimovitch said. “They’re looking for the broadest range of antibiotics possible. Rifamycins would be ideal drugs if we could figure out how to get rid of resistance.”

Artsimovitch and Svetlov conducted the study with lead author Dmitry Vassylyev, University of Alabama at Birmingham and also with RIKEN Harima Institute in Hyogo, Japan. They also worked with other researchers from the RIKEN Harima Institute and the Structural Biology Research Center of the High Energy Accelerator Research Organization in Ibaraki, Japan.

This work was supported by grants from the National Institutes of Health and from RIKEN.

Irina Artsimovitch | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>