Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find how some antibiotics kill bacteria

12.08.2005


Researchers have uncovered how members of one family of antibiotics kill bacteria that make people sick.



This new knowledge may help drug developers make slight changes to these antibiotics to make them more effective against drug-resistant strains of bacteria, said Irina Artsimovitch, a study co-author and an assistant professor of microbiology at Ohio State University.

The antibiotics studied belong to the rifamycin family. Until now, researchers believed that these antibiotics and their derivatives (there are at least a thousand) all killed bacteria in the same way.


But the new study used recent advances in X-ray imagery to obtain the highest resolution figures ever available of how rifamycins bind to their targets. With these new images, the researchers found – for the first time - that these drugs remove a key component of the bacteria they attack. The researchers were also surprised to find that different rifamycins bring about this same result in slightly different ways.

“This is a major revision of how we thought these antibiotics functioned,” Artsimovitch said. “The new molecular details help explain why bacteria that are resistant to one kind of rifamycin antibiotic might still be sensitive to another.

“That may help to narrow down the search for new synthetic derivatives to conquer resistance altogether.”

The study appears in the current issue of the journal Cell.

Ryfamycin antibiotics are one of the first-line treatments for tuberculosis, a disease that is on the rise worldwide. The drugs are also relatively inexpensive to make, have a long shelf life and are nearly non-toxic to cells other than the pathogenic ones they target.

The problem with them, though, is the rampant development of bacterial resistance.

“There is a voluntary restriction on the use of rifamycins in treating infections other than tuberculosis and meningitis due to the fear of spread of resistant mutations,” said Vladimir Svetlov, a study co-author and a research associate in microbiology at Ohio State.

“Those mutations could render these antibiotics ineffective against most of the serious health threats that they are being used to manage,” he continued.

All rifamycins belong to one of two structural classes. The researchers used two clinically important rifamycins – rifapentin and rifabutin – that represent each structural class. They obtained samples of the antibiotics in their respective crystal structure form. Crystal structures are sets of atoms arranged in ways that are unique to a particular substance.

The researchers used a technique called X-ray crystallography to determine where individual atoms are located within a crystal structure. From this information they then created high-resolution computer models of each antibiotic, approximating what each substance looked like on the atomic level and exactly how each bound to and affected a key component of bacteria called RNA polymerase.

RNA polymerase is the machinery that keeps bacteria going – a bacterium cannot carry out gene expression without it. Cut off gene expression and bacteria are dead. In their study, the researchers looked at the effects of rifapentin and rifabutin on E. coli RNA polymerase.

With recent advances in X-ray crystallographic studies of RNA polymerase, the researchers could determine exactly where and how both antibiotics bound to RNA polymerase in E. coli, and what it did to that polymerase as a result.

The results provide new evidence of how rifamycins inhibit pathogenic bacteria. That finding applies to all rifamycins, Artsimovitch said.

The study showed that rifamyacins inhibit pathogenic bacteria by removing the crucial magnesium ion (Mg2+) from a bacterium’s RNA polymerase.

“Removing this ion is like removing spark plugs from an engine,” Artsimovitch said. “The car may look fine, but it won’t run.

“Until we could look under polymerase’s molecular ‘hood’ we couldn’t see what the problem was,” she said. “We never suspected that removing this ion was what killed rifamycin-sensitive bacteria. But the resolution of previous atomic structures wasn’t sufficient enough to see that.”

The higher-resolution images also showed that rifapentin and rifabutin each bind just a little differently to E. coli, but still bring about the same results.

The answer to creating a new breed of bacteria-resistant antibiotics may lie in these variations in binding.

“From these findings we can suggest how rifamycins that are currently used in therapy can be improved to be effective even against existing resistant strains of bacteria,” Artsimovitch said

Rifamycins are what drug companies call “broad-spectrum antibiotics.” Not only are they effective against tuberculosis, they also act against a variety of other pathogens including Neisseria meningitidis, the bacterium that causes one form of meningitis; Helicobacter pylori, which causes stomach ulcers; and even some parasitic worms by eliminating the symbiotic bacteria parasites depend on.

“It’s the kind of drug the pharmaceutical business wants to produce,” Artsimovitch said. “They’re looking for the broadest range of antibiotics possible. Rifamycins would be ideal drugs if we could figure out how to get rid of resistance.”

Artsimovitch and Svetlov conducted the study with lead author Dmitry Vassylyev, University of Alabama at Birmingham and also with RIKEN Harima Institute in Hyogo, Japan. They also worked with other researchers from the RIKEN Harima Institute and the Structural Biology Research Center of the High Energy Accelerator Research Organization in Ibaraki, Japan.

This work was supported by grants from the National Institutes of Health and from RIKEN.

Irina Artsimovitch | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>