Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find how some antibiotics kill bacteria

12.08.2005


Researchers have uncovered how members of one family of antibiotics kill bacteria that make people sick.



This new knowledge may help drug developers make slight changes to these antibiotics to make them more effective against drug-resistant strains of bacteria, said Irina Artsimovitch, a study co-author and an assistant professor of microbiology at Ohio State University.

The antibiotics studied belong to the rifamycin family. Until now, researchers believed that these antibiotics and their derivatives (there are at least a thousand) all killed bacteria in the same way.


But the new study used recent advances in X-ray imagery to obtain the highest resolution figures ever available of how rifamycins bind to their targets. With these new images, the researchers found – for the first time - that these drugs remove a key component of the bacteria they attack. The researchers were also surprised to find that different rifamycins bring about this same result in slightly different ways.

“This is a major revision of how we thought these antibiotics functioned,” Artsimovitch said. “The new molecular details help explain why bacteria that are resistant to one kind of rifamycin antibiotic might still be sensitive to another.

“That may help to narrow down the search for new synthetic derivatives to conquer resistance altogether.”

The study appears in the current issue of the journal Cell.

Ryfamycin antibiotics are one of the first-line treatments for tuberculosis, a disease that is on the rise worldwide. The drugs are also relatively inexpensive to make, have a long shelf life and are nearly non-toxic to cells other than the pathogenic ones they target.

The problem with them, though, is the rampant development of bacterial resistance.

“There is a voluntary restriction on the use of rifamycins in treating infections other than tuberculosis and meningitis due to the fear of spread of resistant mutations,” said Vladimir Svetlov, a study co-author and a research associate in microbiology at Ohio State.

“Those mutations could render these antibiotics ineffective against most of the serious health threats that they are being used to manage,” he continued.

All rifamycins belong to one of two structural classes. The researchers used two clinically important rifamycins – rifapentin and rifabutin – that represent each structural class. They obtained samples of the antibiotics in their respective crystal structure form. Crystal structures are sets of atoms arranged in ways that are unique to a particular substance.

The researchers used a technique called X-ray crystallography to determine where individual atoms are located within a crystal structure. From this information they then created high-resolution computer models of each antibiotic, approximating what each substance looked like on the atomic level and exactly how each bound to and affected a key component of bacteria called RNA polymerase.

RNA polymerase is the machinery that keeps bacteria going – a bacterium cannot carry out gene expression without it. Cut off gene expression and bacteria are dead. In their study, the researchers looked at the effects of rifapentin and rifabutin on E. coli RNA polymerase.

With recent advances in X-ray crystallographic studies of RNA polymerase, the researchers could determine exactly where and how both antibiotics bound to RNA polymerase in E. coli, and what it did to that polymerase as a result.

The results provide new evidence of how rifamycins inhibit pathogenic bacteria. That finding applies to all rifamycins, Artsimovitch said.

The study showed that rifamyacins inhibit pathogenic bacteria by removing the crucial magnesium ion (Mg2+) from a bacterium’s RNA polymerase.

“Removing this ion is like removing spark plugs from an engine,” Artsimovitch said. “The car may look fine, but it won’t run.

“Until we could look under polymerase’s molecular ‘hood’ we couldn’t see what the problem was,” she said. “We never suspected that removing this ion was what killed rifamycin-sensitive bacteria. But the resolution of previous atomic structures wasn’t sufficient enough to see that.”

The higher-resolution images also showed that rifapentin and rifabutin each bind just a little differently to E. coli, but still bring about the same results.

The answer to creating a new breed of bacteria-resistant antibiotics may lie in these variations in binding.

“From these findings we can suggest how rifamycins that are currently used in therapy can be improved to be effective even against existing resistant strains of bacteria,” Artsimovitch said

Rifamycins are what drug companies call “broad-spectrum antibiotics.” Not only are they effective against tuberculosis, they also act against a variety of other pathogens including Neisseria meningitidis, the bacterium that causes one form of meningitis; Helicobacter pylori, which causes stomach ulcers; and even some parasitic worms by eliminating the symbiotic bacteria parasites depend on.

“It’s the kind of drug the pharmaceutical business wants to produce,” Artsimovitch said. “They’re looking for the broadest range of antibiotics possible. Rifamycins would be ideal drugs if we could figure out how to get rid of resistance.”

Artsimovitch and Svetlov conducted the study with lead author Dmitry Vassylyev, University of Alabama at Birmingham and also with RIKEN Harima Institute in Hyogo, Japan. They also worked with other researchers from the RIKEN Harima Institute and the Structural Biology Research Center of the High Energy Accelerator Research Organization in Ibaraki, Japan.

This work was supported by grants from the National Institutes of Health and from RIKEN.

Irina Artsimovitch | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>