Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers identify key enzyme linked to childhood blindness

12.08.2005


Findings could lead to gene therapy cure



In findings that could lead to curing some forms of congenital blindness through gene therapy, researchers at UCLA have discovered that RPE65, a gene missing in infants born with the blinding disease Leber congenital amaurosis, is also a key enzyme in the visual cycle. The identity of this enzyme has long been a mystery to scientists.
The study, "Rpe65 is the Retinoid Isomerase in Bovine Retinal Pigment Epithelium," is published in the Aug. 12 issue of Cell magazine.

"We were amazed when we discovered the function for Rpe65 -- and that Rpe65 is the retinoid isomerase. It is a protein that all of us had known about for years," said Dr. Gabriel Travis, professor of ophthalmology and biological chemistry at UCLA’s Jules Stein Eye Institute and one of the researchers. "It’s like searching the world for a treasure, then discovering it in your own back yard."



Leber congenital amaurosis is an inherited disease that is believed to cause up to 20 percent of all cases of childhood blindness. It is caused by mutations in several different genes including RPE65. An important characteristic of this disease is that the light sensitive rod and cone cells remain intact in the retinas of Leber patients for a long time.

"This suggests that replacement of RPE65 by gene therapy should correct the blindness in these children, as was observed in mice and dogs with RPE65 mutations," Travis said. "This is a major breakthrough in understanding the visual cycle. It has ramifications for several inherited blinding diseases caused by mutations in visual cycle genes."

The newly identified isomerase enzyme plays a crucial role in the regeneration of rhodopsin visual pigment in the retina after light exposure. Rhodopsin contains a light absorbing molecule called 11 cis retinaldehyde, related to vitamin A, which is converted upon light absorption to all trans retinaldehyde in a process called photo bleaching. This conversion is the first step in visual perception.

Photo bleaching leaves the rhodopsin insensitive to light until the all trans retinaldehyde is converted, or "isomerized," back into 11 cis retinaldehyde, which completes the visual cycle. Scientists have for two decades been attempting to identify the retinoid isomerase enzyme that catalyzes this regeneration of 11 cis retinaldehyde. Scientists have also been stumped by the function of the Rpe65 protein

Working with Travis at the Jules Stein Eye Institute, Dr. Minghao Jin, visiting assistant researcher in ophthalmology, performed an expression screen in cultured human cells, looking for a gene that caused these cells to convert vitamin A into 11 cis retinol.

The researchers are now studying the effects on retinoid isomerase activity of specific disease causing mutations in the RPE65 gene, which should provide more data on the cause of Leber congenital amaurosis and on how the Rpe65 protein works. The researchers are also examining the function of other proteins that work closely with Rpe65. Mutations in the genes for these interacting proteins are linked to other forms of human blindness.

"These results settle the long standing mystery about the identity of the retinoid isomerase," Travis said. "Scientists have been searching for this enzyme for almost 20 years. Our results also explain why finding this enzyme has been so difficult, until now."

Other researchers on this project besides Travis and Jin are Hui Sun, assistant professor of physiology at UCLA, and Songhua Li and Walid Moghrabi, staff research associates at the Jules Stein Eye Institute.

Enrique Rivero | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>