Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers identify key enzyme linked to childhood blindness

12.08.2005


Findings could lead to gene therapy cure



In findings that could lead to curing some forms of congenital blindness through gene therapy, researchers at UCLA have discovered that RPE65, a gene missing in infants born with the blinding disease Leber congenital amaurosis, is also a key enzyme in the visual cycle. The identity of this enzyme has long been a mystery to scientists.
The study, "Rpe65 is the Retinoid Isomerase in Bovine Retinal Pigment Epithelium," is published in the Aug. 12 issue of Cell magazine.

"We were amazed when we discovered the function for Rpe65 -- and that Rpe65 is the retinoid isomerase. It is a protein that all of us had known about for years," said Dr. Gabriel Travis, professor of ophthalmology and biological chemistry at UCLA’s Jules Stein Eye Institute and one of the researchers. "It’s like searching the world for a treasure, then discovering it in your own back yard."



Leber congenital amaurosis is an inherited disease that is believed to cause up to 20 percent of all cases of childhood blindness. It is caused by mutations in several different genes including RPE65. An important characteristic of this disease is that the light sensitive rod and cone cells remain intact in the retinas of Leber patients for a long time.

"This suggests that replacement of RPE65 by gene therapy should correct the blindness in these children, as was observed in mice and dogs with RPE65 mutations," Travis said. "This is a major breakthrough in understanding the visual cycle. It has ramifications for several inherited blinding diseases caused by mutations in visual cycle genes."

The newly identified isomerase enzyme plays a crucial role in the regeneration of rhodopsin visual pigment in the retina after light exposure. Rhodopsin contains a light absorbing molecule called 11 cis retinaldehyde, related to vitamin A, which is converted upon light absorption to all trans retinaldehyde in a process called photo bleaching. This conversion is the first step in visual perception.

Photo bleaching leaves the rhodopsin insensitive to light until the all trans retinaldehyde is converted, or "isomerized," back into 11 cis retinaldehyde, which completes the visual cycle. Scientists have for two decades been attempting to identify the retinoid isomerase enzyme that catalyzes this regeneration of 11 cis retinaldehyde. Scientists have also been stumped by the function of the Rpe65 protein

Working with Travis at the Jules Stein Eye Institute, Dr. Minghao Jin, visiting assistant researcher in ophthalmology, performed an expression screen in cultured human cells, looking for a gene that caused these cells to convert vitamin A into 11 cis retinol.

The researchers are now studying the effects on retinoid isomerase activity of specific disease causing mutations in the RPE65 gene, which should provide more data on the cause of Leber congenital amaurosis and on how the Rpe65 protein works. The researchers are also examining the function of other proteins that work closely with Rpe65. Mutations in the genes for these interacting proteins are linked to other forms of human blindness.

"These results settle the long standing mystery about the identity of the retinoid isomerase," Travis said. "Scientists have been searching for this enzyme for almost 20 years. Our results also explain why finding this enzyme has been so difficult, until now."

Other researchers on this project besides Travis and Jin are Hui Sun, assistant professor of physiology at UCLA, and Songhua Li and Walid Moghrabi, staff research associates at the Jules Stein Eye Institute.

Enrique Rivero | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>