Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA researchers identify key enzyme linked to childhood blindness

12.08.2005


Findings could lead to gene therapy cure



In findings that could lead to curing some forms of congenital blindness through gene therapy, researchers at UCLA have discovered that RPE65, a gene missing in infants born with the blinding disease Leber congenital amaurosis, is also a key enzyme in the visual cycle. The identity of this enzyme has long been a mystery to scientists.
The study, "Rpe65 is the Retinoid Isomerase in Bovine Retinal Pigment Epithelium," is published in the Aug. 12 issue of Cell magazine.

"We were amazed when we discovered the function for Rpe65 -- and that Rpe65 is the retinoid isomerase. It is a protein that all of us had known about for years," said Dr. Gabriel Travis, professor of ophthalmology and biological chemistry at UCLA’s Jules Stein Eye Institute and one of the researchers. "It’s like searching the world for a treasure, then discovering it in your own back yard."



Leber congenital amaurosis is an inherited disease that is believed to cause up to 20 percent of all cases of childhood blindness. It is caused by mutations in several different genes including RPE65. An important characteristic of this disease is that the light sensitive rod and cone cells remain intact in the retinas of Leber patients for a long time.

"This suggests that replacement of RPE65 by gene therapy should correct the blindness in these children, as was observed in mice and dogs with RPE65 mutations," Travis said. "This is a major breakthrough in understanding the visual cycle. It has ramifications for several inherited blinding diseases caused by mutations in visual cycle genes."

The newly identified isomerase enzyme plays a crucial role in the regeneration of rhodopsin visual pigment in the retina after light exposure. Rhodopsin contains a light absorbing molecule called 11 cis retinaldehyde, related to vitamin A, which is converted upon light absorption to all trans retinaldehyde in a process called photo bleaching. This conversion is the first step in visual perception.

Photo bleaching leaves the rhodopsin insensitive to light until the all trans retinaldehyde is converted, or "isomerized," back into 11 cis retinaldehyde, which completes the visual cycle. Scientists have for two decades been attempting to identify the retinoid isomerase enzyme that catalyzes this regeneration of 11 cis retinaldehyde. Scientists have also been stumped by the function of the Rpe65 protein

Working with Travis at the Jules Stein Eye Institute, Dr. Minghao Jin, visiting assistant researcher in ophthalmology, performed an expression screen in cultured human cells, looking for a gene that caused these cells to convert vitamin A into 11 cis retinol.

The researchers are now studying the effects on retinoid isomerase activity of specific disease causing mutations in the RPE65 gene, which should provide more data on the cause of Leber congenital amaurosis and on how the Rpe65 protein works. The researchers are also examining the function of other proteins that work closely with Rpe65. Mutations in the genes for these interacting proteins are linked to other forms of human blindness.

"These results settle the long standing mystery about the identity of the retinoid isomerase," Travis said. "Scientists have been searching for this enzyme for almost 20 years. Our results also explain why finding this enzyme has been so difficult, until now."

Other researchers on this project besides Travis and Jin are Hui Sun, assistant professor of physiology at UCLA, and Songhua Li and Walid Moghrabi, staff research associates at the Jules Stein Eye Institute.

Enrique Rivero | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>