Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin researchers discover new gene for type 2 diabetes using DNA chips

12.08.2005


Findings may provide new target for treating the disease



Using the newest DNA chip technology, scientists at Joslin Diabetes Center have discovered a new gene implicated in the cause of type 2 diabetes. In a new study appearing in the August 12 issue of the journal Cell, the investigators first identified genes that were altered in their level of expression in islets isolated from people with type 2 diabetes. The researchers then went on to show that when they created a defect in one of these genes called ARNT in mice, the mice developed alterations in insulin secretion that were like those in humans with type 2 diabetes.

The ARNT (aryl hydrocarbon receptor nuclear translocator) gene is a member of a family of transcription factors essential for normal embryonic development and also is involved in response to conditions of hypoxia and certain environmental toxins, such as dioxin. Transcription factors like ARNT control the expression and activity of many other genes in the cell and thus serve as master regulators of cell function. As a component of the response to toxins and hypoxic stress, ARNT is also at a potential site to integrate genetic and environmental insults.


"While previous work suggested defects in other pathways in a small percentage of people with type 2 diabetes, what was unexpected was that the islets (beta cells) from all of the people with type 2 diabetes studied demonstrated a marked down-regulation of the nuclear transcription factor ARNT," said C. Ronald Kahn, M.D., President and Director of Joslin Diabetes Center and the Mary K. Iacocca Professor of Medicine at Harvard Medical School, who led the research team. "These findings provide new insights into the pathogenesis of the most common forms of type 2 diabetes and a possible new target for treatment of this disease," he said.

The investigators, including lead author Jenny Elizabeth Gunton, M.B.B.S., F.R.A.C.P., Ph.D., a C.J. Martin Fellowship recipient from Australia, then went on to demonstrate that reducing the level of the ARNT gene in beta cells in culture also produced defects in glucose-stimulated insulin release and alterations in islet gene expression that mimic those in humans with type 2 diabetes.

"This study represents the first use of DNA chips to study islets of diabetic patients and the first demonstration of an important role for ARNT and altered gene expression in impaired beta-cell function in the pathogenesis of human type 2 diabetes," Dr. Kahn said.

Type 2 diabetes is the most common human metabolic disease, affecting almost 200 million people worldwide, and is increasing at epidemic rates in the U.S. and worldwide. The pathogenesis of type 2 diabetes involves two defects: insulin resistance and impaired functioning of the insulin-producing beta cells in the pancreas. Both of these have some element of genetic programming. In 2 to 5 percent of patients with a form of type 2 diabetes known as maturity onset diabetes of the young (MODY), defects involving genes essential for beta-cell function have been found. However, in the majority of patients with the common variety of type 2 diabetes, the genetic defects of this beta-cell defect remain unknown.

The research was supported by funding from the Mary K. Iacocca Professorship and the Diabetes Genome Anatomy Project (DGAP) of the National Institute of Health’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). It represents the unique synergy of a jointly funded public program, DGAP, and private support for diabetes research from the Iacocca Foundation.

Other researchers who participated in the study included Rohit N. Kulkarni, M.D., Ph.D., Yu-Hua Tseng, Ph.D., Terumasa Okada, Ph.D., all from Joslin; Russell S. Roberson, Ph.D., formerly of Joslin; Frank J. Gonzalez, M.D., and SunHee Yim, Ph.D., of the National Institutes of Health’s National Cancer Institute; Camillo Ricordi, M.D., of the University of Miami’s Diabetes Research Institute; Phillip J. O’Connell, M.D., and Wayne J. Hawthorne, M.D., of the National Pancreas Transplant Institute of the University of Sydney in Australia.

Marge Dwyer | EurekAlert!
Further information:
http://www.joslin.org

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>