Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein linked to growth of organs and cancer

12.08.2005


Johns Hopkins scientists have identified a protein in fruit flies whose counterpart product in humans may help cause cancer.



The researchers report in the Aug. 12 issue of Cell that a protein dubbed Yorkie directly controls the fruit fly’s organ size and, when overabundant, causes increased cell growth and decreased cell death, hallmarks of cancer. Yorkie’s relative in mammals, called YAP, appears to do the same thing, the researchers report, which suggests that in humans, a defect in the gene that makes YAP might contribute to cancer.

"Over the past few decades, science has identified a few so-called oncogenes, whose protein products act as accelerators and trigger abnormal cell growth," said Duojia Pan, Ph.D., who carried out most of the study at the University of Texas Southwestern Medical Center at Dallas before coming to the Johns Hopkins Institute for Basic Biomedical Sciences. "YAP seems to be another one and our lab is already investigating the amount of YAP protein in human tumors to see if excessive amounts are there."


The researchers also report Yorkie directly regulates the size of all the fruit fly’s organs. "We were surprised to find that by adding Yorkie to levels above normal, the fruit fly’s organs grew larger," said Pan. "Likewise, by removing Yorkie to levels below normal, the fruit fly’s organs were smaller than usual."

The new findings build on Pan’s earlier studies, which showed that fruit flies missing a gene called hippo developed tumors. That study revealed a tumor-suppression pathway involving proteins made by hippo and two other like-minded genes, all three of which function in a chain reaction to chemically add phosphate to other proteins, a process called phosphorylation.

"From those results, we predicted that another protein must be involved in the tumor-suppression pathway that is a target of the phosphorylation cascade," said Pan.

Yorkie turns out to be that "mystery protein," the researchers report. In their experiments, Pan and his colleagues show that the hippo phosphorylation cascade, by adding a phosphate group to the Yorkie protein, turns it off.

When the scientists engineered reduced levels of hippo and other proteins that keep Yorkie in check, Yorkie caused tissues to overgrow by prompting more cells to grow and fewer to die, the hallmarks of cancer.

Further experiments in the fruit fly that replaced Yorkie with YAP showed both proteins play similar roles, suggesting YAP might participate in a tumor-related pathway in mammals.

Pan is now trying to identify the signal that tells genes like hippo to turn on or off once an organ grows to the appropriate size. That signal could be harnessed for therapeutics against cancer.

The authors of the paper besides Pan are Shian Wu from Hopkins, and Jianbin Huang, Jose Barrera and Krista Matthews from UT Southwestern. The study was funded by the National Institutes of Health.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>