Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein linked to growth of organs and cancer

12.08.2005


Johns Hopkins scientists have identified a protein in fruit flies whose counterpart product in humans may help cause cancer.



The researchers report in the Aug. 12 issue of Cell that a protein dubbed Yorkie directly controls the fruit fly’s organ size and, when overabundant, causes increased cell growth and decreased cell death, hallmarks of cancer. Yorkie’s relative in mammals, called YAP, appears to do the same thing, the researchers report, which suggests that in humans, a defect in the gene that makes YAP might contribute to cancer.

"Over the past few decades, science has identified a few so-called oncogenes, whose protein products act as accelerators and trigger abnormal cell growth," said Duojia Pan, Ph.D., who carried out most of the study at the University of Texas Southwestern Medical Center at Dallas before coming to the Johns Hopkins Institute for Basic Biomedical Sciences. "YAP seems to be another one and our lab is already investigating the amount of YAP protein in human tumors to see if excessive amounts are there."


The researchers also report Yorkie directly regulates the size of all the fruit fly’s organs. "We were surprised to find that by adding Yorkie to levels above normal, the fruit fly’s organs grew larger," said Pan. "Likewise, by removing Yorkie to levels below normal, the fruit fly’s organs were smaller than usual."

The new findings build on Pan’s earlier studies, which showed that fruit flies missing a gene called hippo developed tumors. That study revealed a tumor-suppression pathway involving proteins made by hippo and two other like-minded genes, all three of which function in a chain reaction to chemically add phosphate to other proteins, a process called phosphorylation.

"From those results, we predicted that another protein must be involved in the tumor-suppression pathway that is a target of the phosphorylation cascade," said Pan.

Yorkie turns out to be that "mystery protein," the researchers report. In their experiments, Pan and his colleagues show that the hippo phosphorylation cascade, by adding a phosphate group to the Yorkie protein, turns it off.

When the scientists engineered reduced levels of hippo and other proteins that keep Yorkie in check, Yorkie caused tissues to overgrow by prompting more cells to grow and fewer to die, the hallmarks of cancer.

Further experiments in the fruit fly that replaced Yorkie with YAP showed both proteins play similar roles, suggesting YAP might participate in a tumor-related pathway in mammals.

Pan is now trying to identify the signal that tells genes like hippo to turn on or off once an organ grows to the appropriate size. That signal could be harnessed for therapeutics against cancer.

The authors of the paper besides Pan are Shian Wu from Hopkins, and Jianbin Huang, Jose Barrera and Krista Matthews from UT Southwestern. The study was funded by the National Institutes of Health.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>