Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants discriminate between self and non self

10.08.2005


Two peas in a pod may not be so friendly when planted in the ground and even two parts of the same plant, once separated may treat the former conjoined twin as an alien "enemy," according to a Penn State researcher.



"We were looking at how plants determine who is a competitor when competing with other roots for limited resources," says Dr. Omer Falik, postdoctoral researcher in plant ecology. "There is no reason for roots to fight if they belong to the same plant."

The question was, do plants recognize their own roots and avoid competing with them and how do they do this? Working with common garden peas, Falik worked with Dr. Ariel Novoplansky at Ben Gurion University of the Negev, Israel. The researchers used plants that had two roots and planted them in a chamber that forced them to grow a specified distance from each other and from roots of a neighboring plant.


"We found that the roots grew significantly more and longer secondary roots on the non-self side," Falik told attendees at the 90th Annual Meeting of the Ecological Society of America today (Aug 8) in Montreal, Canada.

The mechanism for this self/non-self discrimination could be based on either individually specific chemical recognition – such as that known from plant reproductive systems -- or physiological coordination between roots that belong to the same plant. To test this, the researchers used plants that had two roots and two shoots and split them into two separate plants that were genetically identical, but physiologically separated. The plants acted as if their separated twin was a non-self plant, even though genetically it was identical. "This eliminated the possibility that the mechanism was based on specific chemical recognition," says Falik. "The results prove that at least in the studied plants, self/non-self root discrimination is based on physiological coordination between roots belonging to the same plant. Such coordination might be based on internal pulsing of hormonal or electrical signals which desynchronize when the plants are separated."

Falik is currently working with Dr. David Eissenstat, professor of woody plant physiology and Dr. Roger Koide, professor of horticultural ecology on examining how the latitude of a plants origin affects the respiratory responses of plant roots and mycorrhizal fungi to soil temperatures.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>