Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover genetic pathway responsible for breast cancer cell growth

09.08.2005


Scientists at the MUHC have made an important discovery that will advance our understanding of how the female hormone estrogen causes growth of breast cancer cells. The research, in collaboration with scientists at the Institut de Recherches Cliniques de Montreal (IRCM) identifies 153 genes that respond to estrogen and one in particular that can be used to halt the growth of breast cancer cells. The study, published in today’s Proceedings of the National Academy of Sciences (PNAS), will focus future research for a breast cancer cure.

"We have known for a very long time that estrogen causes the growth of breast cancer cells," says lead investigator Dr. Vincent Giguère. "This is how oncologists came to use anti-estrogen as drugs to combat the most common forms of breast cancer." What has remained a mystery however, is the molecular mechanism by which estrogen makes breast cancer cells grow. "Until this is solved, we will be no closer to figuring out how to prevent and cure breast cancer," Dr. Giguère noted.

Over the past two decades researchers have identified around 20 estrogen-activated genes that play a role in development of breast cancer. "That’s about one gene discovery per year," says Dr. Giguère. "Using cutting edge new technology derived directly from the human genome project, this study adds over hundred additional genes to this total."



The technology used information obtained from the human genome project to create a new type of DNA microchip containing the partial DNA sequences of approximately 19,000 genes. Dr. Giguère’s team was able to localize where the estrogen receptor was bound in the genome of breast cancer cells, thereby identifying a large number of genes that respond to this hormone in a single experiment. "This technology, first developed for the study of yeast, now offers the opportunity to rapidly identify, in a genome-wide manner, the genes involved in the response to natural hormones or drugs in normal and cancer cells," says co-author Dr. François Robert from the IRCM.

Of particular importance was the discovery of a gene called FOXA1, known as a transcription factor. "FOXA1 can be viewed as a facilitator of estrogen action on cancer cells," says Josée Laganière, a graduate student at the MUHC and principal author of the paper. "It is found in breast cancer tumours that express the estrogen receptor." In their study, the researchers found that the FOXA1 gene was required for the estrogen receptor to activate the growth of breast cancer cells.

"By inactivating the FOXA1 gene in laboratory cell cultures, we were able to block the growth-inducing effect of estogen, and thus halt the growth of breast cancer cells," says Dr. Giguère. In FOXA1 researchers have found a new target that affects the development of breast cancer. In practical terms, efforts can now be focused on developing a more precise cure/treatment for cancer based on this gene. "The problem with cancer drugs in general has been that they are often untargeted, which is why patients experience side effects," notes Dr. Giguère. "The more focused the drugs the less side effects and the more chance you have to cure the disease."

"Research targeting individual molecules associated with pathogenesis of cancer has led to positive clinical results," says Dr. Joseph Ragaz, Director of MUHC Oncology Program. "Evidence-based data on agents such as Gleevac in leukemia, Avastin in colorectal cancer, and more recently with Herceptin for breast cancer, confirm that the efforts of researchers like Dr. Giguere and his team save lives and money. These connections between research and health care are one of the strengths of academic hospitals like the MUHC."

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

The McGill University Health Centre (MUHC) is a comprehensive academic health institution with an international reputation for excellence in clinical programs, research and teaching. The MUHC is a merger of five teaching hospitals affiliated with the Faculty of Medicine at McGill University--the Montreal Children’s, Montreal General, Royal Victoria, and Montreal Neurological Hospitals, as well as the Montreal Chest Institute. Building on the tradition of medical leadership of the founding hospitals, the goal of the MUHC is to provide patient care based on the most advanced knowledge in the health care field, and to contribute to the development of new knowledge.

Ian Popple | MUHC PR and Commun
Further information:
http://www.muhc.ca/research

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>