Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro RNAs play role in egg making

09.08.2005


Researchers at Northwestern University and Carnegie Mellon University have found that a recently described class of molecules called microRNAs (miRNAs) play an important role in regulating oogenesis, the process by which females make eggs. MiRNAs silence genes by binding to genetic elements called messenger RNA and preventing them from making new proteins -- the molecules primarily responsible for cell activities.



While previous research has identified some miRNA targets, investigators haven’t yet seen how they impact developmental processes.

"We found the first evidence that miRNAs are involved in oogenesis, and this adds an extra layer of complexity that needs to be explored if we are to understand how development is regulated," said Jonathan Minden, associate professor of biological sciences at Carnegie Mellon and one of the paper’s authors.


The findings will be published online the week of Aug. 8 by the Proceedings of the National Academy of Sciences (PNAS).

"If miRNAs are missing from a developing egg, then it fails to develop to term, and the net result is infertility," said lead author Richard W. Carthew, Owen L. Coon Professor of Molecular Biology at Northwestern. "It is intriguing to think that miRNA dysfunction might be at the root cause of certain forms of infertility. We already know that miRNAs are involved in cancer and stem cell biology."

Investigators were initially surprised to find that miRNAs affected only a small fraction of expressed genes within a maturing egg. On closer inspection, they found that the genes affected by miRNAs shared common roles as regulators of protein manufacturing or turnover. These results suggest that miRNAs tightly control the abundance of proteins throughout the process of oogenesis and fertilization.

Using a proteomics tool developed at Carnegie Mellon, the scientists compared maturing fruit fly eggs. One group of eggs was missing a gene essential for producing miRNAs, whereas another group of eggs had normal miRNA production. (All plants and animals have DICER, the gene the produces miRNAs, so the researchers used a "genetic trick" to generate DICER-less eggs.)

In comparing overall protein production between these two groups, the researchers discovered that miRNAs stopped the manufacturing of a small group of key proteins, including ones that produce ribosomes. These structures constitute the cell’s protein-making machinery, and their shutdown would render cells unable to produce new proteins.

The investigators also found that miRNAs appear to attenuate protein turnover. They speculate that this function may allow a developing egg to accumulate large amounts of specific proteins necessary to drive the amazing structural changes seen in embryogenesis.

In addition to Carthew and Minden, other authors on the PNAS paper are Kenji Nakahara and Kevin Kim of Northwestern University and Christin Sciulli and Susan Dowd of Carnegie Mellon University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>