Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro RNAs play role in egg making

09.08.2005


Researchers at Northwestern University and Carnegie Mellon University have found that a recently described class of molecules called microRNAs (miRNAs) play an important role in regulating oogenesis, the process by which females make eggs. MiRNAs silence genes by binding to genetic elements called messenger RNA and preventing them from making new proteins -- the molecules primarily responsible for cell activities.



While previous research has identified some miRNA targets, investigators haven’t yet seen how they impact developmental processes.

"We found the first evidence that miRNAs are involved in oogenesis, and this adds an extra layer of complexity that needs to be explored if we are to understand how development is regulated," said Jonathan Minden, associate professor of biological sciences at Carnegie Mellon and one of the paper’s authors.


The findings will be published online the week of Aug. 8 by the Proceedings of the National Academy of Sciences (PNAS).

"If miRNAs are missing from a developing egg, then it fails to develop to term, and the net result is infertility," said lead author Richard W. Carthew, Owen L. Coon Professor of Molecular Biology at Northwestern. "It is intriguing to think that miRNA dysfunction might be at the root cause of certain forms of infertility. We already know that miRNAs are involved in cancer and stem cell biology."

Investigators were initially surprised to find that miRNAs affected only a small fraction of expressed genes within a maturing egg. On closer inspection, they found that the genes affected by miRNAs shared common roles as regulators of protein manufacturing or turnover. These results suggest that miRNAs tightly control the abundance of proteins throughout the process of oogenesis and fertilization.

Using a proteomics tool developed at Carnegie Mellon, the scientists compared maturing fruit fly eggs. One group of eggs was missing a gene essential for producing miRNAs, whereas another group of eggs had normal miRNA production. (All plants and animals have DICER, the gene the produces miRNAs, so the researchers used a "genetic trick" to generate DICER-less eggs.)

In comparing overall protein production between these two groups, the researchers discovered that miRNAs stopped the manufacturing of a small group of key proteins, including ones that produce ribosomes. These structures constitute the cell’s protein-making machinery, and their shutdown would render cells unable to produce new proteins.

The investigators also found that miRNAs appear to attenuate protein turnover. They speculate that this function may allow a developing egg to accumulate large amounts of specific proteins necessary to drive the amazing structural changes seen in embryogenesis.

In addition to Carthew and Minden, other authors on the PNAS paper are Kenji Nakahara and Kevin Kim of Northwestern University and Christin Sciulli and Susan Dowd of Carnegie Mellon University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>