Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro RNAs play role in egg making

09.08.2005


Researchers at Northwestern University and Carnegie Mellon University have found that a recently described class of molecules called microRNAs (miRNAs) play an important role in regulating oogenesis, the process by which females make eggs. MiRNAs silence genes by binding to genetic elements called messenger RNA and preventing them from making new proteins -- the molecules primarily responsible for cell activities.



While previous research has identified some miRNA targets, investigators haven’t yet seen how they impact developmental processes.

"We found the first evidence that miRNAs are involved in oogenesis, and this adds an extra layer of complexity that needs to be explored if we are to understand how development is regulated," said Jonathan Minden, associate professor of biological sciences at Carnegie Mellon and one of the paper’s authors.


The findings will be published online the week of Aug. 8 by the Proceedings of the National Academy of Sciences (PNAS).

"If miRNAs are missing from a developing egg, then it fails to develop to term, and the net result is infertility," said lead author Richard W. Carthew, Owen L. Coon Professor of Molecular Biology at Northwestern. "It is intriguing to think that miRNA dysfunction might be at the root cause of certain forms of infertility. We already know that miRNAs are involved in cancer and stem cell biology."

Investigators were initially surprised to find that miRNAs affected only a small fraction of expressed genes within a maturing egg. On closer inspection, they found that the genes affected by miRNAs shared common roles as regulators of protein manufacturing or turnover. These results suggest that miRNAs tightly control the abundance of proteins throughout the process of oogenesis and fertilization.

Using a proteomics tool developed at Carnegie Mellon, the scientists compared maturing fruit fly eggs. One group of eggs was missing a gene essential for producing miRNAs, whereas another group of eggs had normal miRNA production. (All plants and animals have DICER, the gene the produces miRNAs, so the researchers used a "genetic trick" to generate DICER-less eggs.)

In comparing overall protein production between these two groups, the researchers discovered that miRNAs stopped the manufacturing of a small group of key proteins, including ones that produce ribosomes. These structures constitute the cell’s protein-making machinery, and their shutdown would render cells unable to produce new proteins.

The investigators also found that miRNAs appear to attenuate protein turnover. They speculate that this function may allow a developing egg to accumulate large amounts of specific proteins necessary to drive the amazing structural changes seen in embryogenesis.

In addition to Carthew and Minden, other authors on the PNAS paper are Kenji Nakahara and Kevin Kim of Northwestern University and Christin Sciulli and Susan Dowd of Carnegie Mellon University.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>