Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified maize not found in southern Mexico

09.08.2005


Contrary to what many scientists thought, genetically modified (GM) corn has not yet spread to native maize crops in southern Mexico.



After analyzing tens of thousands of seeds from maize crops grown in 2003 and 2004, researchers from Mexico and the United States found no evidence of transgenes in these indigenous varieties.

The finding surprised the researchers, said Allison Snow, a professor of evolution, ecology and organismal biology at Ohio State University . She helped lead the study that appears online this week in the Early Edition of the Proceedings of the National Academy of Sciences.


The study is the first published report to survey the frequency of transgenes in native varieties of maize.

Four years ago, researchers reported finding four cobs of GM maize in Oaxaca , the southern Mexican state where Snow and her colleagues conducted their work. And despite the government’s ban on planting the genetically engineered grain, other unpublished studies confirmed that GM maize had spread to remote mountain villages in the region.

In a country whose culture and identity revolve heavily around maize, or corn – the crop was first developed here thousands of years ago – the thought of importing GM varieties that could contaminate native plants frightens many citizens.

“The genetic diversity of native maize is an important resource with great cultural significance,” Snow said. “If farmers think that their highly revered native plants have been altered by transgenes, they might even stop planting them.”

“No one knew how common transgenic corn was in this area, we thought it could be as high as 5 to 10 percent,” Snow said. “There is great potential for transgenes to come across the U.S. border, with millions of tons of GM grain imported each year for processed food and animal feed.”

In 1998, the Mexican government imposed a six-year moratorium on the release of genetically modified maize in the country. However, farmers in Mexico are allowed to grow genetically engineered crops such as cotton and soybeans.

Over the two-year study, the researchers gathered more than 153,000 seeds from 870 maize plants in 125 fields in Oaxaca . They sent these seeds to two commercial companies in the United States that can test for very low concentrations of transgenic material in maize seeds.

The researchers were looking for traces of two key transgenes – one or both of which are found in all GM maize crops. Test results showed no evidence of the presence of either transgene from any of the seeds.

“We now know that transgenic maize isn’t growing in Oaxaca ,” Snow said. “Mexican farmers who don’t want transgenes in their crops will be relieved to find out that these uninvited genes seem to have disappeared.”

Transgenes that were present in Oaxaca prior to this study simply may not have survived, Snow said. Modern GM varieties may not be very hardy in Oaxaca, even if they can mate with local plants and gain a degree of hardiness that way.

“Indigenous maize grows mainly in the mountains – the climate and soils can be pretty harsh there,” she said. “Also, the influx of transgenic seeds may have declined if farmers became aware of the issue and took extra precautions with their seed stocks.”

The Mexican government might approve the cultivation of GM maize at some point in the future – meanwhile, transgenic seeds can easily enter Mexico from the United States, and more cases of wandering transgenes seem likely.

Snow conducted the work with scientists from the Instituto Nacional de Ecologia (SEMARNAT) and the National Commission for the Knowledge and Use of Biodiversity (CONABIO ), both in Mexico City; and from Genetic ID North America, Inc., in Fairfield, Iowa.

This research was supported in part by the College of Biological Sciences at Ohio State and by the Global Environmental Facility (GEF).

Allison Snow | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>