Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison scientists zero in on drugs’ sweet spots

09.08.2005


Employing a simple new technique to manipulate the sugars that power many front-line drugs, a team of Wisconsin scientists has enhanced the antic-cancer properties of a digitalis, a drug commonly used to treat heart disease.



Reporting the work in the Aug. 8 edition of the Proceedings of the National Academy of Sciences, a team led by University of Wisconsin-Madison professor of pharmaceutical sciences Jon S. Thorson, describes a series of experiments that boosted the cell-killing potency and tumor specificity of the drug, derived from the foxglove plant and used to stimulate the heart. The drug is suspected to have anti-cancer properties, but its use to treat cancer has been little explored.

The new work is important because it provides scientists and drug companies with a quick and easy way to manipulate the sugars found in chemicals produced in nature. Such chemicals -- often found in microbes, plants and marine organisms -- are the bedrock agents upon which many leading drugs are built. The ways sugar groups are organized on a molecule often dictate the agent’s biological effects.


"In the past, to alter the sugars attached to these drugs was very difficult," explains Thorson, of the UW-Madison Pharmacy School’s Laboratory for Biosynthetic Chemistry. "These are very complex molecules."

The new technique replaces enzymes, biological catalysts, with a robust chemical method, allowing researchers to easily manipulate and exchange the sugars found in natural agents.

Critically, the method allows medicinal chemists to investigate the biological effects of the many forms of sugars or carbohydrates found in nature. "There are many different variations of sugars -- they’re all over the place in nature -- and they are very important. This method allows us to rapidly scan the roles of these sugars in complex natural products."

The simplification of the process to manipulate natural sugars could help make natural products more appealing to the pharmaceutical industry. Despite the fact that 60-75 percent of drugs approved to treat infectious disease and cancer over the past 25 years are of natural origin, many companies have lost interest in developing natural products because of the complex chemistry that underpins them.

The ability to zero in on the sweet spot of drugs derived from natural products promises to help scientists specify the role of the sugar and make new drugs or enhance old ones to greater precision and effect. The series of experiments performed by Thorson’s team, for example, may help researchers enhance the anti-cancer effects of digitalis and downshift its influence on the heart, thus avoiding potential detrimental effects in cancer patients.

"I think this (technique) is going to send us down some interesting mechanistic roads," Thorson notes. "Digitalis hasn’t been aggressively pursued as an anti-cancer agent."

According to Thorson, the technology can be widely applied: "We’ve already taken this chemistry and applied it to many different drug classes. It’s possible to extend it to antibiotics and antivirals. If you want to plug in a sugar and see what it does for you, this is the best way to do it."

The new technique, according to Thorson, will play a prominent role in the new UW-Madison National Cooperative Drug Discovery Group, a consortium of UW-Madison scientists seeking to develop new anti-cancer drugs from natural products. The group was recently formed with the help of a $5.6 million grant from the National Cancer Institute (NCI).

The new work by Thorson was supported by the National Institutes of Health and the NCI. Thorson’s collaborators include Joseph Langenhan, a former UW-Madison graduate student and post-doctoral fellow and now a chemistry professor at Seattle University; Noel R. Peters, and Professor F. Michael Hoffmann of the UW-Madison Comprehensive Cancer Center’s Small Molecule Screening Facility; and Ilia A. Guzei, director of crystallography in the UW-Madison department of chemistry.

Jon S. Thorson | EurekAlert!
Further information:
http://www.pharmacy.wisc.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>