Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UW-Madison scientists zero in on drugs’ sweet spots


Employing a simple new technique to manipulate the sugars that power many front-line drugs, a team of Wisconsin scientists has enhanced the antic-cancer properties of a digitalis, a drug commonly used to treat heart disease.

Reporting the work in the Aug. 8 edition of the Proceedings of the National Academy of Sciences, a team led by University of Wisconsin-Madison professor of pharmaceutical sciences Jon S. Thorson, describes a series of experiments that boosted the cell-killing potency and tumor specificity of the drug, derived from the foxglove plant and used to stimulate the heart. The drug is suspected to have anti-cancer properties, but its use to treat cancer has been little explored.

The new work is important because it provides scientists and drug companies with a quick and easy way to manipulate the sugars found in chemicals produced in nature. Such chemicals -- often found in microbes, plants and marine organisms -- are the bedrock agents upon which many leading drugs are built. The ways sugar groups are organized on a molecule often dictate the agent’s biological effects.

"In the past, to alter the sugars attached to these drugs was very difficult," explains Thorson, of the UW-Madison Pharmacy School’s Laboratory for Biosynthetic Chemistry. "These are very complex molecules."

The new technique replaces enzymes, biological catalysts, with a robust chemical method, allowing researchers to easily manipulate and exchange the sugars found in natural agents.

Critically, the method allows medicinal chemists to investigate the biological effects of the many forms of sugars or carbohydrates found in nature. "There are many different variations of sugars -- they’re all over the place in nature -- and they are very important. This method allows us to rapidly scan the roles of these sugars in complex natural products."

The simplification of the process to manipulate natural sugars could help make natural products more appealing to the pharmaceutical industry. Despite the fact that 60-75 percent of drugs approved to treat infectious disease and cancer over the past 25 years are of natural origin, many companies have lost interest in developing natural products because of the complex chemistry that underpins them.

The ability to zero in on the sweet spot of drugs derived from natural products promises to help scientists specify the role of the sugar and make new drugs or enhance old ones to greater precision and effect. The series of experiments performed by Thorson’s team, for example, may help researchers enhance the anti-cancer effects of digitalis and downshift its influence on the heart, thus avoiding potential detrimental effects in cancer patients.

"I think this (technique) is going to send us down some interesting mechanistic roads," Thorson notes. "Digitalis hasn’t been aggressively pursued as an anti-cancer agent."

According to Thorson, the technology can be widely applied: "We’ve already taken this chemistry and applied it to many different drug classes. It’s possible to extend it to antibiotics and antivirals. If you want to plug in a sugar and see what it does for you, this is the best way to do it."

The new technique, according to Thorson, will play a prominent role in the new UW-Madison National Cooperative Drug Discovery Group, a consortium of UW-Madison scientists seeking to develop new anti-cancer drugs from natural products. The group was recently formed with the help of a $5.6 million grant from the National Cancer Institute (NCI).

The new work by Thorson was supported by the National Institutes of Health and the NCI. Thorson’s collaborators include Joseph Langenhan, a former UW-Madison graduate student and post-doctoral fellow and now a chemistry professor at Seattle University; Noel R. Peters, and Professor F. Michael Hoffmann of the UW-Madison Comprehensive Cancer Center’s Small Molecule Screening Facility; and Ilia A. Guzei, director of crystallography in the UW-Madison department of chemistry.

Jon S. Thorson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>