Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison scientists zero in on drugs’ sweet spots

09.08.2005


Employing a simple new technique to manipulate the sugars that power many front-line drugs, a team of Wisconsin scientists has enhanced the antic-cancer properties of a digitalis, a drug commonly used to treat heart disease.



Reporting the work in the Aug. 8 edition of the Proceedings of the National Academy of Sciences, a team led by University of Wisconsin-Madison professor of pharmaceutical sciences Jon S. Thorson, describes a series of experiments that boosted the cell-killing potency and tumor specificity of the drug, derived from the foxglove plant and used to stimulate the heart. The drug is suspected to have anti-cancer properties, but its use to treat cancer has been little explored.

The new work is important because it provides scientists and drug companies with a quick and easy way to manipulate the sugars found in chemicals produced in nature. Such chemicals -- often found in microbes, plants and marine organisms -- are the bedrock agents upon which many leading drugs are built. The ways sugar groups are organized on a molecule often dictate the agent’s biological effects.


"In the past, to alter the sugars attached to these drugs was very difficult," explains Thorson, of the UW-Madison Pharmacy School’s Laboratory for Biosynthetic Chemistry. "These are very complex molecules."

The new technique replaces enzymes, biological catalysts, with a robust chemical method, allowing researchers to easily manipulate and exchange the sugars found in natural agents.

Critically, the method allows medicinal chemists to investigate the biological effects of the many forms of sugars or carbohydrates found in nature. "There are many different variations of sugars -- they’re all over the place in nature -- and they are very important. This method allows us to rapidly scan the roles of these sugars in complex natural products."

The simplification of the process to manipulate natural sugars could help make natural products more appealing to the pharmaceutical industry. Despite the fact that 60-75 percent of drugs approved to treat infectious disease and cancer over the past 25 years are of natural origin, many companies have lost interest in developing natural products because of the complex chemistry that underpins them.

The ability to zero in on the sweet spot of drugs derived from natural products promises to help scientists specify the role of the sugar and make new drugs or enhance old ones to greater precision and effect. The series of experiments performed by Thorson’s team, for example, may help researchers enhance the anti-cancer effects of digitalis and downshift its influence on the heart, thus avoiding potential detrimental effects in cancer patients.

"I think this (technique) is going to send us down some interesting mechanistic roads," Thorson notes. "Digitalis hasn’t been aggressively pursued as an anti-cancer agent."

According to Thorson, the technology can be widely applied: "We’ve already taken this chemistry and applied it to many different drug classes. It’s possible to extend it to antibiotics and antivirals. If you want to plug in a sugar and see what it does for you, this is the best way to do it."

The new technique, according to Thorson, will play a prominent role in the new UW-Madison National Cooperative Drug Discovery Group, a consortium of UW-Madison scientists seeking to develop new anti-cancer drugs from natural products. The group was recently formed with the help of a $5.6 million grant from the National Cancer Institute (NCI).

The new work by Thorson was supported by the National Institutes of Health and the NCI. Thorson’s collaborators include Joseph Langenhan, a former UW-Madison graduate student and post-doctoral fellow and now a chemistry professor at Seattle University; Noel R. Peters, and Professor F. Michael Hoffmann of the UW-Madison Comprehensive Cancer Center’s Small Molecule Screening Facility; and Ilia A. Guzei, director of crystallography in the UW-Madison department of chemistry.

Jon S. Thorson | EurekAlert!
Further information:
http://www.pharmacy.wisc.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>