Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DDT-resistant insects given genetic boost that helps resistance spread

09.08.2005


Insects that can withstand the powerful pesticide DDT that was banned in the 1970s have a genetic advantage over their rivals that has helped them spread across the globe ever since, according to research published in Current Biology tomorrow (9 August 2005).



This discovery overturns current theories that resistance to pesticides burdens insects with a genetic disadvantage that would stop them from competing with non-resistant insects once farmers stop using that pesticide.

Instead, researchers now believe that fruit flies that develop resistance to DDT gain a two-fold advantage: not only can they survive being sprayed with pesticide, which other insects cannot, but in doing so they develop a genetic advantage that makes them and their offspring more likely to thrive even when spraying is abandoned.


Researchers warn that the same process may be going on when doctors across the world prescribe antibiotics to cure infections.

Antibiotic resistance may potentially confer the same kind of genetic advantage to ‘superbug’ bacteria, and measures such as preventing certain antibiotics from being prescribed may not halt the spread of antibiotic resistance in bacteria.

“We found that DDT resistance in fruit flies not only carries no cost but in fact confers an advantage when inherited through the female,” said Richard ffrench-Constant (correct), from the University of Bath, who led the study.

“This suggests that by becoming DDT resistant the female flies are passing on some unknown advantage to their progeny, presumably associated with the single metabolic enzyme (cytochrome P450) that they over express.’’

“These results are important for the use of any drug, pesticide or antibiotic as they suggest that resistance will not always go away when we do not spray or prescribe antibiotics.”

Scientists had previously believed that the genetic ‘cost’ of resistance would mean that DDT resistance would dwindle once the pesticide taken out of use and DDT-susceptible insects would regain dominance.

“Although this assumption is widespread, data to support this contention is actually thin,” said Professor ffrench-Constant. He believes previous work may not have looked at genetically related strains and that ‘costs’ may therefore be associated with the differing genetic backgrounds of insects examined, and not the resistance genes themselves.

“Experimenters looking at genetic fitness in resistant insects often only look at single character traits such as number of eggs laid, and often compare resistant and susceptible lines that are genetically unrelated.

“Differences in fitness therefore often correspond to differences in genetic background rather and are not due to the resistance gene itself.”

Using DDT-resistant fruit flies (Drosophila melanogaster) in state-of-the-art controlled temperature rooms provided by the Wolfson Trust, Caroline McCart, a PhD student in the Department of Biology and Biochemistry at the University, went to great lengths to make sure that DDT resistant and susceptible strains differed only by the resistance gene itself.

Using antibiotics they also ‘cured’ the flies of the microbes that are known to affect their ability to reproduce and could affect the results.

In order to assess the genetic fitness of both the resistant and susceptible strains, the researchers monitored the survival and development rate of all life stages of their offspring.

They found that DDT resistance in fruit flies not only carries no cost but in fact confers an advantage when inherited through the female.

This discovery comes at a time when a number of developing nations, including South Africa, are considering re-introducing (or continuing the use of) DDT in an attempt to reduce the major health problems caused by malaria.

Use of DDT (Dichloro-diphenyl-trichloroethane) increased enormously on a worldwide basis after World War II, primarily because of its effectiveness against the mosquito that spreads malaria and lice that carry typhus.

DDT-resistant mosquitoes were first detected in India in 1959, and they have increased so rapidly that when a local spray program is begun now, most mosquitoes become resistant in a matter of months rather than years.

Worryingly, some resistant strains also show ‘cross-resistance’ to a number of different compounds, so spraying with one insecticide can unexpectedly increase resistance to newer compounds subsequently introduced to try and overcome resistance.

The World Health Organization estimates that during the period of DDT use, approximately 25 million human lives have been saved. Today pyrethroids are most commonly used in mosquito control but they act on the same target in the nervous system as DDT and ironically spraying with DDT may therefore have pre-selected for resistance to the newer pyrethroids.

The University of Bath is one of the UK’s leading universities, with an international reputation for quality research and teaching. In 16 subject areas the University of Bath is rated in the top ten in the country.

Andrew McLaughlin | EurekAlert!
Further information:
http://www.bath.ac.uk/news/releases
http://www.bath.ac.uk

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>