Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than aiding balance, vestibular organs provide an on-line movement guidance system

09.08.2005


Anyone who’s had to find his or her way through a darkened room can appreciate that nonvisual cues play a large role in our sense of movement. What might be less apparent is that not all such cues come from our remaining four senses.



In a finding that broadens our understanding of human movement control, researchers at the Institute of Neurology in London have shown that the inner-ear vestibular organs provide what is essentially an on-line movement guidance system for maintaining the accuracy of whole-body movements.

The vestibular organs are commonly thought of as sensors that serve balance, the control of visual gaze, and higher spatial functions, such as navigation. However, because these organs respond to head movements, such as accelerations, they also have the potential to signal the accuracy of any voluntary movement that causes the head to move in space. The brain may then use that information for movement control in the same way that it uses sensory feedback information from the eyes, muscles, and skin to assess and adjust a limb movement as it is being executed.


In the new work, appearing in the August 9 issue of Current Biology, Brian Day and Raymond Reynolds of University College London show that the brain uses signals from the vestibular organs to make on-line adjustments to whole-body voluntary movements. The researchers were able to show this by precisely stimulating the vestibular sensory nerves through the skin while volunteers performed a simple upper-body movement. The researchers found that the stimulus altered the normal vestibular response to the upper-body movement and automatically caused the subjects to adjust their movement speed--and did so in a predictable way that depended on how the vestibular sensory nerves were stimulated. As one might expect when perturbing the guidance system, the effect of the nerve stimulation was only apparent in connection with body movement; the same stimulus had almost no effect when the subjects were stationary.

The authors of the study point out that this vestibular mechanism of movement control may be especially valuable when other senses become less reliable--such as in the dark--or for complex, high-precision whole-body movements, such as those of the gymnast or circus performer.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>