Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than aiding balance, vestibular organs provide an on-line movement guidance system

09.08.2005


Anyone who’s had to find his or her way through a darkened room can appreciate that nonvisual cues play a large role in our sense of movement. What might be less apparent is that not all such cues come from our remaining four senses.



In a finding that broadens our understanding of human movement control, researchers at the Institute of Neurology in London have shown that the inner-ear vestibular organs provide what is essentially an on-line movement guidance system for maintaining the accuracy of whole-body movements.

The vestibular organs are commonly thought of as sensors that serve balance, the control of visual gaze, and higher spatial functions, such as navigation. However, because these organs respond to head movements, such as accelerations, they also have the potential to signal the accuracy of any voluntary movement that causes the head to move in space. The brain may then use that information for movement control in the same way that it uses sensory feedback information from the eyes, muscles, and skin to assess and adjust a limb movement as it is being executed.


In the new work, appearing in the August 9 issue of Current Biology, Brian Day and Raymond Reynolds of University College London show that the brain uses signals from the vestibular organs to make on-line adjustments to whole-body voluntary movements. The researchers were able to show this by precisely stimulating the vestibular sensory nerves through the skin while volunteers performed a simple upper-body movement. The researchers found that the stimulus altered the normal vestibular response to the upper-body movement and automatically caused the subjects to adjust their movement speed--and did so in a predictable way that depended on how the vestibular sensory nerves were stimulated. As one might expect when perturbing the guidance system, the effect of the nerve stimulation was only apparent in connection with body movement; the same stimulus had almost no effect when the subjects were stationary.

The authors of the study point out that this vestibular mechanism of movement control may be especially valuable when other senses become less reliable--such as in the dark--or for complex, high-precision whole-body movements, such as those of the gymnast or circus performer.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>