Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find BRCA1 tumor suppression nullified by cyclin D1

08.08.2005


Study results reaffirm cyclin D1 as a candidate target for molecular therapeutic control of breast tumor development.



For about a decade, scientists have recognized that many cases of hereditary breast cancer result from a mutation of a specific gene called BRCA1, which, in its normal state, helps keep tumor formation in check. About five to 10 percent of breast cancer cases arise from these genetic miscues, about half of which are linked to the abnormal functioning of BRCA1.

But now scientists have discovered that a protein called cyclin D1, grossly overproduced in about half of all cases of breast cancer, can also disrupt BRCA1’s normal role as a cancer inhibitor. They found that because cyclin D1 binds to the same estrogen receptor as does BRCA1, when the cell is flooded with cyclin D1, BRCA1 is unable to activate a pathway that stops cancer development.


The results reaffirm cyclin D1 as a candidate target for molecular therapeutic control of breast tumor development.

"We’ve previously shown that if you have a gene therapy vector that blocks cyclin D1 in breast tumors, you can block the growth of those tumors," said Richard Pestell, M.D., Ph.D., director of the Lombardi Comprehensive Cancer Center at Georgetown University Medical Center and senior author of the paper published in the August 1 issue of Cancer Research.

Also part of the Georgetown University research team were Chenguang Wang, Ph.D., assistant professor at the Lombardi Comprehensive Cancer Center and the lead author of the article, and Georgetown Professor of Oncology Eliot M. Rosen, a co-investigator on the study, which was funded in part by a grant from the Department of Defense. Participating in the research from the Georgetown oncology department were Saijun Fan, Zhiping Li, Maofu Fu, Mahadev Rao, Yongxian Ma, and Chris Albanese.

This paper, Pestell said, identifies the mechanism by which cyclin D1 nullifies one activity of the tumor suppressor BRCA1.

"Cyclin D1 is a collaborative oncogene and is sufficient for the induction of breast tumorogenesis in transgenic mice," he said. "This protein blocks the functional activity of the BRCA1 tumor suppressor. The science reported in this paper describes an important oncogene/tumor suppressor interaction."

The tumor-promoting action of various oncogenic sources upregulating expression of cyclin D1 converge at the common binding site on the estrogen receptor alpha (ERa) that is shared by both cyclin D1 and BRCA1. This research builds on a major discovery by the laboratory by Dr. Rosen, showing that BRCA1 interacts with, and inhibits the activity of ERa, the protein that transduces the growth signal of estrogen.

"This may help explain why the cyclin D1 gene and the BRCA1 gene are important primarily in hormone responsive cancers," Pestell said. "The interaction occurs at the level of the ERa hormone receptor."

Cyclin D1 is a protein produced by cells and routinely functions in events that promote cell division. In cancer, cyclin D1 is regulated and abundantly overexpressed by a number of factors that promote tumor growth, such as the oncogenes ErB2, src, and ras. In more than half of human patients with breast cancer, tumor cells produce as much as eight times the amount of cyclin D than healthy breast cells.

Cyclin D1 interferes with BRCA1 function because the two proteins both bind to the same spot on ERa, an important protein that governs cell proliferation properties in both healthy and cancerous cells. In healthy cells, BRCA1 binds to ERa to restrain and control estrogen-target genes that promote cell division. In cancer cells, however, cyclin D1 occupies the binding site on the ERa to promote proliferation. The abundance of cyclin D1 pre-empts BRCA1 binding to the estrogen receptor and negates the tumor suppressor role of the BRCA1 gene product.

In addition to their Georgetown research colleagues, Wang and Pestell conducted their research in concert with Michael Lisanti, Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, N.Y.; Benita Katzenellenbogen, Departments of Molecular and Integrative Physiology and Cell and Structural Biology, University of Illinois and College of Medicine, Urbana, Ill.; Peter J. Kushner, Metabolic Research Unit, University of California-San Francisco School of Medicine, San Francisco, Calif.; and Barbara Weber, Department of Molecular Genetics, University of Pennsylvania, Philadelphia, Pa.

Laura Cavender | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>