Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research offers clues to prevent brain damage in premature babies

08.08.2005


Factors inhibiting the brain’s natural self-healing process identified



Factors that inhibit the brain’s natural self-healing process and that may offer new insights into how to prevent brain damage in premature babies have been identified by a team of researchers supported in part by the March of Dimes.
The research is published online today in Nature Medicine.

Stephen A. Back, M.D., Ph.D., an Associate Professor of Pediatrics and Neurology at the Oregon Health & Science University School of Medicine, Portland, and colleagues identified some of the key factors that prevent brain damage repair in premature babies and patients with multiple sclerosis (MS) or certain other neurological diseases. Their findings offer important clues about why the nervous systems fails to repair itself and suggest that some forms of brain damage could be reversed.



Dr. Back, who studies developmental brain injury in premature infants, previously found a link between damage to white matter in the brain associated with premature birth, and damage to immature cells in the brain and spinal cord, called oligodendrocyte progenitors. These cells normally mature to become oligodendrocytes that make myelin (the insulating sheath surrounding nerve fibers in the brain and spinal cord) throughout life. In some cases, these cells fail to mature and cannot repair damage to the white matter of the brain.

The white matter is made up of long nerve fibers wrapped in myelin. Different kinds of white matter injury cause cerebral palsy and learning problems in children born prematurely, and MS in older children and adults. Dr. Back and his colleagues found that hyaluronic acid (HA) prevent immature oligodendrocytes from maturing and coating nerve fibers with new myelin. Astrocytes, the first-responders to nerve damage in the brain, produce HA, which accumulates on nerve fibers where myelin is missing.

"Preterm birth can interrupt the normal myelination process. Therefore, this report may help to explain the brain damage seen in premature babies, some of whom have cerebral palsy," said Michael Katz, M.D., Senior Vice President for Research and Global Programs at the March of Dimes, which is supporting Dr. Back. "Until we find the answers to preventing prematurity, research such as this may lead us to new ways to prevent brain damage and has the potential to improve the lives of thousands of infants."

Prematurity is the leading killer of America’s newborns and has increased 29 percent since 1981. More than 470,000 babies are born prematurely each year in the United States. Premature babies often die or suffer lifelong consequences, including cerebral palsy, mental retardation, chronic lung disease, blindness, and hearing loss.

According to research conducted by the National Institute of Child Health and Human Development, 25 percent of extremely premature babies have neurological problems at 18 to 22 months, and 17 percent will develop cerebral palsy.

"Hyaluronan Accumulates in Demyelinated Lesions and Inhibits Oligodendrocyte Progenitor Maturation," published in the September 2005 issue of Nature Medicine, volume 11, number 9, was a collaborative effort of Dr. Back, senior researcher Larry Sherman, Ph.D., an Adjunct Associate Professor of Cell and Developmental Biology, OHSU School of Medicine, and other colleagues at OHSU, the National Institutes of Health, and the Cleveland Clinic Foundation.

Elizabeth Lynch | EurekAlert!
Further information:
http://www.marchofdimes.com

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>