Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research offers clues to prevent brain damage in premature babies

08.08.2005


Factors inhibiting the brain’s natural self-healing process identified



Factors that inhibit the brain’s natural self-healing process and that may offer new insights into how to prevent brain damage in premature babies have been identified by a team of researchers supported in part by the March of Dimes.
The research is published online today in Nature Medicine.

Stephen A. Back, M.D., Ph.D., an Associate Professor of Pediatrics and Neurology at the Oregon Health & Science University School of Medicine, Portland, and colleagues identified some of the key factors that prevent brain damage repair in premature babies and patients with multiple sclerosis (MS) or certain other neurological diseases. Their findings offer important clues about why the nervous systems fails to repair itself and suggest that some forms of brain damage could be reversed.



Dr. Back, who studies developmental brain injury in premature infants, previously found a link between damage to white matter in the brain associated with premature birth, and damage to immature cells in the brain and spinal cord, called oligodendrocyte progenitors. These cells normally mature to become oligodendrocytes that make myelin (the insulating sheath surrounding nerve fibers in the brain and spinal cord) throughout life. In some cases, these cells fail to mature and cannot repair damage to the white matter of the brain.

The white matter is made up of long nerve fibers wrapped in myelin. Different kinds of white matter injury cause cerebral palsy and learning problems in children born prematurely, and MS in older children and adults. Dr. Back and his colleagues found that hyaluronic acid (HA) prevent immature oligodendrocytes from maturing and coating nerve fibers with new myelin. Astrocytes, the first-responders to nerve damage in the brain, produce HA, which accumulates on nerve fibers where myelin is missing.

"Preterm birth can interrupt the normal myelination process. Therefore, this report may help to explain the brain damage seen in premature babies, some of whom have cerebral palsy," said Michael Katz, M.D., Senior Vice President for Research and Global Programs at the March of Dimes, which is supporting Dr. Back. "Until we find the answers to preventing prematurity, research such as this may lead us to new ways to prevent brain damage and has the potential to improve the lives of thousands of infants."

Prematurity is the leading killer of America’s newborns and has increased 29 percent since 1981. More than 470,000 babies are born prematurely each year in the United States. Premature babies often die or suffer lifelong consequences, including cerebral palsy, mental retardation, chronic lung disease, blindness, and hearing loss.

According to research conducted by the National Institute of Child Health and Human Development, 25 percent of extremely premature babies have neurological problems at 18 to 22 months, and 17 percent will develop cerebral palsy.

"Hyaluronan Accumulates in Demyelinated Lesions and Inhibits Oligodendrocyte Progenitor Maturation," published in the September 2005 issue of Nature Medicine, volume 11, number 9, was a collaborative effort of Dr. Back, senior researcher Larry Sherman, Ph.D., an Adjunct Associate Professor of Cell and Developmental Biology, OHSU School of Medicine, and other colleagues at OHSU, the National Institutes of Health, and the Cleveland Clinic Foundation.

Elizabeth Lynch | EurekAlert!
Further information:
http://www.marchofdimes.com

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>