Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research offers clues to prevent brain damage in premature babies


Factors inhibiting the brain’s natural self-healing process identified

Factors that inhibit the brain’s natural self-healing process and that may offer new insights into how to prevent brain damage in premature babies have been identified by a team of researchers supported in part by the March of Dimes.
The research is published online today in Nature Medicine.

Stephen A. Back, M.D., Ph.D., an Associate Professor of Pediatrics and Neurology at the Oregon Health & Science University School of Medicine, Portland, and colleagues identified some of the key factors that prevent brain damage repair in premature babies and patients with multiple sclerosis (MS) or certain other neurological diseases. Their findings offer important clues about why the nervous systems fails to repair itself and suggest that some forms of brain damage could be reversed.

Dr. Back, who studies developmental brain injury in premature infants, previously found a link between damage to white matter in the brain associated with premature birth, and damage to immature cells in the brain and spinal cord, called oligodendrocyte progenitors. These cells normally mature to become oligodendrocytes that make myelin (the insulating sheath surrounding nerve fibers in the brain and spinal cord) throughout life. In some cases, these cells fail to mature and cannot repair damage to the white matter of the brain.

The white matter is made up of long nerve fibers wrapped in myelin. Different kinds of white matter injury cause cerebral palsy and learning problems in children born prematurely, and MS in older children and adults. Dr. Back and his colleagues found that hyaluronic acid (HA) prevent immature oligodendrocytes from maturing and coating nerve fibers with new myelin. Astrocytes, the first-responders to nerve damage in the brain, produce HA, which accumulates on nerve fibers where myelin is missing.

"Preterm birth can interrupt the normal myelination process. Therefore, this report may help to explain the brain damage seen in premature babies, some of whom have cerebral palsy," said Michael Katz, M.D., Senior Vice President for Research and Global Programs at the March of Dimes, which is supporting Dr. Back. "Until we find the answers to preventing prematurity, research such as this may lead us to new ways to prevent brain damage and has the potential to improve the lives of thousands of infants."

Prematurity is the leading killer of America’s newborns and has increased 29 percent since 1981. More than 470,000 babies are born prematurely each year in the United States. Premature babies often die or suffer lifelong consequences, including cerebral palsy, mental retardation, chronic lung disease, blindness, and hearing loss.

According to research conducted by the National Institute of Child Health and Human Development, 25 percent of extremely premature babies have neurological problems at 18 to 22 months, and 17 percent will develop cerebral palsy.

"Hyaluronan Accumulates in Demyelinated Lesions and Inhibits Oligodendrocyte Progenitor Maturation," published in the September 2005 issue of Nature Medicine, volume 11, number 9, was a collaborative effort of Dr. Back, senior researcher Larry Sherman, Ph.D., an Adjunct Associate Professor of Cell and Developmental Biology, OHSU School of Medicine, and other colleagues at OHSU, the National Institutes of Health, and the Cleveland Clinic Foundation.

Elizabeth Lynch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>