Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough: structure of membrane protein described by Hebrew University, German researchers

05.08.2005


Illustration of the membrane protein NhaA. Area outlined by the white dots indicate the funnel of the protein extending into the cell membrane.


The structure of the membrane protein NhaA has been revealed by researchers at the Hebrew University of Jerusalem and the Max Planck Institute of Germany.

Membrane protein research is at the forefront of modern biological study, with great potential consequences for development of new medicinal treatments and genetic engineering of plants.

The research on NhaA has been carried out by Etana Padan, the Adelina and Massimo DellaPergola Professor of Life Sciences, with Dr. Rimon Avraham, both of the Silberman Institute of Life Sciences at the Hebrew University, and Prof. Hartmut Michel, Nobel prize winner for chemistry in 1988, of the Max Planck for biophysics in Frankfurt, Germany. Their work, described in a recent edition of the journal Nature, was supported by a grant from the German-Israel Binational Science Foundation;



Proteins such as NhaA are found in the membranes of every living cell, from bacteria and up to humans. Until now, the structure of fewer than 50 cell membrane proteins have been discovered, as opposed to 30,000 soluble proteins.

“The location of the proteins in the cell membranes presents tremendous difficulties in research,” said Prof. Padan. “Unlike the majority of those proteins which are soluble in water, the membrane proteins are soluble only in fats or in the presence of detergents.”

The cell membrane is the crossroads of busy, two-way “traffic” through which materials and impulses travel into and out of the cell. The fatty cell membrane is impenetrable to most of these materials and signals; and it is therefore the proteins within the membranes that are responsible for the communication between the cell and its environment. Indeed, more than 60 percent of the medicines in use today are directed at the cell membrane proteins. Since the cell membrane proteins are exposed, in part, to areas extending outside the cells, the medicines are able to reach them without entering the cell itself.

In Prof. Padan’s laboratory, the researchers succeeded in isolating the gene that encodes NhaA in bacteria and in producing a large quantity of the protein in its active state. This achievement paved the way for determining the structure of the protein, providing an essential insight into its mechanism of activity and regulation. NhaA protects the volume of the cell and its internal, normative state in terms of its salinity and acidity.

The deciphering of the NhaA protein’s structure was done utilizing three-dimensional crystals of the protein which diffract x-rays. The work of analyzing the diffraction was done using the powerful electron accelerators in Grenoble, France, and Zurich, Switzerland.

“In this way we were able to reveal the wonderful architecture of the membrane protein, which was unknown before,” said Prof. Padan. “In the center of the protein we found a wide funnel which extends into the cell. The funnel narrows and ends at the point at which it binds with the sodium or the hydrogen deep within the cell membrane. Near that point two chains of the protein unite into a unique structure.”

The researchers believe that this unique structure is the basis for the activity of the protein. The protein operates as a kind of pump, utilizing energy which it receives from processes taking place within the cell. The protein structure thus acts as a kind of molecular motor. This “motor” is connected to the area found at the mouth of the funnel that apparently conveys signals to “modulate” the motor according to the acidity within the cell. The result is that the protein’s activity is controlled in accordance with the needs of the cell in relation to its acidic and basic levels.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>