Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough: structure of membrane protein described by Hebrew University, German researchers

05.08.2005


Illustration of the membrane protein NhaA. Area outlined by the white dots indicate the funnel of the protein extending into the cell membrane.


The structure of the membrane protein NhaA has been revealed by researchers at the Hebrew University of Jerusalem and the Max Planck Institute of Germany.

Membrane protein research is at the forefront of modern biological study, with great potential consequences for development of new medicinal treatments and genetic engineering of plants.

The research on NhaA has been carried out by Etana Padan, the Adelina and Massimo DellaPergola Professor of Life Sciences, with Dr. Rimon Avraham, both of the Silberman Institute of Life Sciences at the Hebrew University, and Prof. Hartmut Michel, Nobel prize winner for chemistry in 1988, of the Max Planck for biophysics in Frankfurt, Germany. Their work, described in a recent edition of the journal Nature, was supported by a grant from the German-Israel Binational Science Foundation;



Proteins such as NhaA are found in the membranes of every living cell, from bacteria and up to humans. Until now, the structure of fewer than 50 cell membrane proteins have been discovered, as opposed to 30,000 soluble proteins.

“The location of the proteins in the cell membranes presents tremendous difficulties in research,” said Prof. Padan. “Unlike the majority of those proteins which are soluble in water, the membrane proteins are soluble only in fats or in the presence of detergents.”

The cell membrane is the crossroads of busy, two-way “traffic” through which materials and impulses travel into and out of the cell. The fatty cell membrane is impenetrable to most of these materials and signals; and it is therefore the proteins within the membranes that are responsible for the communication between the cell and its environment. Indeed, more than 60 percent of the medicines in use today are directed at the cell membrane proteins. Since the cell membrane proteins are exposed, in part, to areas extending outside the cells, the medicines are able to reach them without entering the cell itself.

In Prof. Padan’s laboratory, the researchers succeeded in isolating the gene that encodes NhaA in bacteria and in producing a large quantity of the protein in its active state. This achievement paved the way for determining the structure of the protein, providing an essential insight into its mechanism of activity and regulation. NhaA protects the volume of the cell and its internal, normative state in terms of its salinity and acidity.

The deciphering of the NhaA protein’s structure was done utilizing three-dimensional crystals of the protein which diffract x-rays. The work of analyzing the diffraction was done using the powerful electron accelerators in Grenoble, France, and Zurich, Switzerland.

“In this way we were able to reveal the wonderful architecture of the membrane protein, which was unknown before,” said Prof. Padan. “In the center of the protein we found a wide funnel which extends into the cell. The funnel narrows and ends at the point at which it binds with the sodium or the hydrogen deep within the cell membrane. Near that point two chains of the protein unite into a unique structure.”

The researchers believe that this unique structure is the basis for the activity of the protein. The protein operates as a kind of pump, utilizing energy which it receives from processes taking place within the cell. The protein structure thus acts as a kind of molecular motor. This “motor” is connected to the area found at the mouth of the funnel that apparently conveys signals to “modulate” the motor according to the acidity within the cell. The result is that the protein’s activity is controlled in accordance with the needs of the cell in relation to its acidic and basic levels.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>