Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapped genes show how flower development is controlled

04.08.2005


Scientists at Yale and Cold Spring Harbor Laboratory report the first large-scale survey of patterns of gene expression in flowers, using the model plant Arabidopsis thaliana, to identify the genes most likely to have critical roles in plant reproduction.


Arabidopsis flower with specific gene active only in the stamen-anther.


Arabidopsis flower with specific gene active only in the epidermis.



The researchers studied 1765 lines and identified 80 genes active in petal and stamen development using "gene trapping." In this gene discovery technique a reporter tag was inserted into cells so that they stained blue only when targeted genes were active. When an interesting developmental pattern was identified, the tagged gene was isolated and characterized.

These researchers studied Arabidopsis thaliana, a relative of the mustard plant, to take advantage of the already extensive genetic information available. Most familiar plants are flowering plants, so defining how flowering occurs in Arabidopsis thaliana can be used to understand this process in crops, weeds and trees.


"If a gene is turned on only in one type of tissue or organ within a flower, the chance is good that the gene has an important role in development of that organ. From this collection of patterns of gene expression, we can gain interesting insights about how gene activity is allocated during flower development," said lead author Naomi Nakayama, a graduate student at Yale. "Understanding the process of flower development will help efforts to control aspects of plant reproduction like cross-pollination and seed production."

"Our results show at what times and in which places genes are active," explained Vivian Irish, associate professor of molecular cellular and developmental biology at Yale and senior author on the paper. "It is more than just a phone book of gene names; it tells us what these genes are doing. This is an excellent example of how modern molecular biology techniques help to increase our understanding of complex biological processes.

Collaborators included Juana M.Arroyo, Joseph Simorowski and Bruce May working with Robert Martienssen at the Cold Spring Harbor Laboratory. The research was funded with grant support from the National Science Foundation.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu
http://www.aspb.org/pressreleases/PlantCellRPSept033985.cfm

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>