Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Trapped genes show how flower development is controlled


Scientists at Yale and Cold Spring Harbor Laboratory report the first large-scale survey of patterns of gene expression in flowers, using the model plant Arabidopsis thaliana, to identify the genes most likely to have critical roles in plant reproduction.

Arabidopsis flower with specific gene active only in the stamen-anther.

Arabidopsis flower with specific gene active only in the epidermis.

The researchers studied 1765 lines and identified 80 genes active in petal and stamen development using "gene trapping." In this gene discovery technique a reporter tag was inserted into cells so that they stained blue only when targeted genes were active. When an interesting developmental pattern was identified, the tagged gene was isolated and characterized.

These researchers studied Arabidopsis thaliana, a relative of the mustard plant, to take advantage of the already extensive genetic information available. Most familiar plants are flowering plants, so defining how flowering occurs in Arabidopsis thaliana can be used to understand this process in crops, weeds and trees.

"If a gene is turned on only in one type of tissue or organ within a flower, the chance is good that the gene has an important role in development of that organ. From this collection of patterns of gene expression, we can gain interesting insights about how gene activity is allocated during flower development," said lead author Naomi Nakayama, a graduate student at Yale. "Understanding the process of flower development will help efforts to control aspects of plant reproduction like cross-pollination and seed production."

"Our results show at what times and in which places genes are active," explained Vivian Irish, associate professor of molecular cellular and developmental biology at Yale and senior author on the paper. "It is more than just a phone book of gene names; it tells us what these genes are doing. This is an excellent example of how modern molecular biology techniques help to increase our understanding of complex biological processes.

Collaborators included Juana M.Arroyo, Joseph Simorowski and Bruce May working with Robert Martienssen at the Cold Spring Harbor Laboratory. The research was funded with grant support from the National Science Foundation.

Janet Rettig Emanuel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>