Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve cells’ power plants caught in a traffic jam

04.08.2005


Nerve cells need lots of energy to work properly, and the energy needs to be delivered to the right place at the right time. By inducing a mutation in fruit flies, researchers have figured out that a particular gene governs the movement of cells’ energy-producing units, called mitochondria.


This image shows a neuromuscular junction, where a nerve cell connects to a muscle cell and delivers a signal to the muscle. The blue-and-black striped background is the muscle cell and the green dots are the neuron’s power plants, or mitochondria. The mitochondria move within the nerve cell along the pathways called microtubules, shown here in red. Photo credit: (c) 2005 Greg Macleod & Konrad Zinsmaier.



Rather than moving to the ends of the cells, or synapses, where cell-to-cell communication takes place, mitochondria in mutant fruit flies just piled up in the center of the cell. Even so, the mutant cells could still transmit signals, although not as well.

The findings are surprising because scientists had thought any disruption in normal mitochondrial behavior would be lethal in the embryo stage. Instead, the mutant fruit fly larvae survive for five days, although they don’t live to adulthood.


"Everyone believed that mitochondria are essential at synapses -- and this is wrong," said Konrad E. Zinsmaier, the University of Arizona associate professor of neuroscience who led the research team. "The mutation allows us to study what mitochondria are really good for." The finding provides scientists with additional insight into how nerve cells work and provides a basis for understanding how such dysfunctions cause neurodegenerative diseases.

The researchers will publish their findings in the August 4 issue of the journal Neuron. A complete list of authors and their affiliations can be found at the end of this release.

Little is known about what causes mitochondria to become dysfunctional and how they contribute to neurological disorders. To learn more about what could go wrong with the energy units, Zinsmaier and his colleagues induced a mutation in the fruit fly mitochondrial protein, dMiro. dMiro stands for Drosophila mitochondrial Rho-like GTPase.

Molecular motors shuttle mitochondria within cells along cellular highways called microtubules. Normally, the mitochondria travel the length of the neuron until they reach the synapse. The mutation in the dMiro protein disabled the motor, disrupting the normal pattern of mitochondrial distribution.

The nerves’ synapses are where one nerve cell connects and communicates with other cells. For example, muscle cells contract when they receive the proper signals from nerve cells. Abnormal mitochondrial distribution within a neuron alters its ability to signal properly to adjoining muscle or nerve cells.

Instead of cruising smoothly along the microtubules, the mitochondria in mutant cells become caught in a traffic jam at the entrance ramp, located in the cell’s center.

Even though the synapses of the mutants are entirely devoid of mitochondria, the neuronal function remained intact at low levels of stimulation. But at high levels of stimulation, the mutated nerve cells failed.

Zinsmaier is now questioning the purpose of the mitochondria at the synapse. "How important are mitochondria?" he said. "We were surprised at how long the system could survive without them." Zinsmaier explained that there may be a compensatory mechanism in place that is able to deal with minor mitochondrial dysfunction within the nerve.

Besides providing energy, mitochondria carry out other tasks important for cell survival. One important mitochondrial task is taking up excess calcium. Calcium is the main ingredient for proper neuron function. Too much calcium can lead to cell death. Zinsmaier hypothesizes that there could be a specialized communication system established within neurons involving another cell component that cooperates with mitochondria to properly store calcium.

While he has begun to piece together several theories, Zinsmaier explained that it remains unclear exactly how the compensation occurs. "The real surprise is that there are mechanisms in place that can manage the system somehow," he said. "We didn’t know about them."

The findings made by Zinsmaier and his colleagues have significant implications for neurobiologists, who may now begin looking more closely at defects in mitochondrial transport. Alterations in this process may help explain how and why human neurological diseases, such as muscular dystrophy and spastic paraplegia, develop.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>