Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nerve cells’ power plants caught in a traffic jam


Nerve cells need lots of energy to work properly, and the energy needs to be delivered to the right place at the right time. By inducing a mutation in fruit flies, researchers have figured out that a particular gene governs the movement of cells’ energy-producing units, called mitochondria.

This image shows a neuromuscular junction, where a nerve cell connects to a muscle cell and delivers a signal to the muscle. The blue-and-black striped background is the muscle cell and the green dots are the neuron’s power plants, or mitochondria. The mitochondria move within the nerve cell along the pathways called microtubules, shown here in red. Photo credit: (c) 2005 Greg Macleod & Konrad Zinsmaier.

Rather than moving to the ends of the cells, or synapses, where cell-to-cell communication takes place, mitochondria in mutant fruit flies just piled up in the center of the cell. Even so, the mutant cells could still transmit signals, although not as well.

The findings are surprising because scientists had thought any disruption in normal mitochondrial behavior would be lethal in the embryo stage. Instead, the mutant fruit fly larvae survive for five days, although they don’t live to adulthood.

"Everyone believed that mitochondria are essential at synapses -- and this is wrong," said Konrad E. Zinsmaier, the University of Arizona associate professor of neuroscience who led the research team. "The mutation allows us to study what mitochondria are really good for." The finding provides scientists with additional insight into how nerve cells work and provides a basis for understanding how such dysfunctions cause neurodegenerative diseases.

The researchers will publish their findings in the August 4 issue of the journal Neuron. A complete list of authors and their affiliations can be found at the end of this release.

Little is known about what causes mitochondria to become dysfunctional and how they contribute to neurological disorders. To learn more about what could go wrong with the energy units, Zinsmaier and his colleagues induced a mutation in the fruit fly mitochondrial protein, dMiro. dMiro stands for Drosophila mitochondrial Rho-like GTPase.

Molecular motors shuttle mitochondria within cells along cellular highways called microtubules. Normally, the mitochondria travel the length of the neuron until they reach the synapse. The mutation in the dMiro protein disabled the motor, disrupting the normal pattern of mitochondrial distribution.

The nerves’ synapses are where one nerve cell connects and communicates with other cells. For example, muscle cells contract when they receive the proper signals from nerve cells. Abnormal mitochondrial distribution within a neuron alters its ability to signal properly to adjoining muscle or nerve cells.

Instead of cruising smoothly along the microtubules, the mitochondria in mutant cells become caught in a traffic jam at the entrance ramp, located in the cell’s center.

Even though the synapses of the mutants are entirely devoid of mitochondria, the neuronal function remained intact at low levels of stimulation. But at high levels of stimulation, the mutated nerve cells failed.

Zinsmaier is now questioning the purpose of the mitochondria at the synapse. "How important are mitochondria?" he said. "We were surprised at how long the system could survive without them." Zinsmaier explained that there may be a compensatory mechanism in place that is able to deal with minor mitochondrial dysfunction within the nerve.

Besides providing energy, mitochondria carry out other tasks important for cell survival. One important mitochondrial task is taking up excess calcium. Calcium is the main ingredient for proper neuron function. Too much calcium can lead to cell death. Zinsmaier hypothesizes that there could be a specialized communication system established within neurons involving another cell component that cooperates with mitochondria to properly store calcium.

While he has begun to piece together several theories, Zinsmaier explained that it remains unclear exactly how the compensation occurs. "The real surprise is that there are mechanisms in place that can manage the system somehow," he said. "We didn’t know about them."

The findings made by Zinsmaier and his colleagues have significant implications for neurobiologists, who may now begin looking more closely at defects in mitochondrial transport. Alterations in this process may help explain how and why human neurological diseases, such as muscular dystrophy and spastic paraplegia, develop.

Mari N. Jensen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>