Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On a wing and a prayer

04.08.2005


Alaska researchers seek clues to bird flu



While Alfred Hitchcock’s "The Birds" made many of us uneasy at the sight of amassing gulls years ago, today public health officials around the world are beginning to cast an equally uneasy eye toward migratory birds, especially in Alaska, following recent outbreaks of avian influenza in Southeast Asia and, last week, in Siberia.

Alaska is at the intersection of the Asian and North American flyways for migratory birds and scientists say that could provide an unusual mixing ground for the evolution of new strains of bird flu - strains that could spread to lower latitudes and possibly jump to other species, including humans.


University of Alaska (UAF) scientists and state and federal biologists from across Alaska have joined forces and formed the University of Alaska Program on the Biology and Epidemiology of Avian Influenza in Alaska to study migratory birds in Alaska and determine how many are infected and how strains of influenza virus jump from one species to another.

Wild birds are the natural hosts of many influenza viral strains that normally do not infect humans. However, recent outbreaks of bird flu in Southeast Asia were caused by a highly pathogenic H5N1 strain and there is increasing evidence that this strain can jump the species barrier and cause severe disease and mortality in humans. A second and even greater concern, according to the World Health Organization, is the possibility that the present situation could give rise to an influenza pandemic in humans akin to the 1918 "Spanish Flu." On Friday, WHO warned that China is not rigorously following up on a recent deadly H5N1 outbreak among wild birds.

The 1918 influenza pandemic killed more than 500,000 people in the United States and as many as 50 million people worldwide, according to the U.S. Centers for Disease Control. Many died within the first few days after infection; almost half of those who died were healthy, young adults.

"The initial goal of the (UA) program is to assess the diversity and prevalence of avian influenza in Alaska’s bird populations," said Jonathan Runstadler, veterinarian, assistant professor of molecular biology at UAF’s Institute of Arctic Biology, and a lead scientist on the Avian Influenza Program.

Runstadler along with biologists and technicians from UAF and state, federal and private wildlife agencies are spending part of this summer’s bird-banding season collecting cloacal swabs of birds temporarily captured as part of other studies.

"One of the reasons we don’t understand the ecology of the virus is that we don’t know what happens to the virus in its natural ecosystem," Runstadler said. "We need to understand how the biology of birds impacts disease transmission. For instance, does the time of year when birds nest, fledge, stage, migrate, or interact with young birds affect transmission?"

The cloacal samples will be screened for the avian influenza virus, positive samples will be identified and sent to The Institute of Genomic Research (TIGR) for sequencing of the entire viral RNA genome which will then be published in GenBank, the National Institutes of Health collection of all publicly available RNA and DNA sequences.

With gene sequences, bird species, geographic location and capture information in hand, Tom Marr, UA president’s professor of bioinformatics, Jim Long, biotechnology computing technical leader, and Buck Sharpton, UA president’s professor of remote sensing plan to create the first Web site of georeferenced avian influenza data.

"We knew about (bird) flu because Kevin Winker has been talking about flu for years," said George Happ, Director of the IDeA Networks for Biomedical Research Excellence (INBRE) at UAF, which is funding the UA avian influenza program.

"Before I came nobody was paying attention to the extensive overlap between the Old World and New World migration systems as a disease pathway," said Winker, curator of birds at the UA Museum of the North and an associate professor of biology at UAF.

"Our ability to combine studies in natural history and biomedicine is why I came to UAF," Runstadler said. "We are best able to do this type of research at UAF because we have the expertise in biological and ecological science, the state resources, and now the biomedical capabilities."

Marie Gilbert | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>