Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grasshopper love songs give insight into sensory tuning

04.08.2005


As anyone whose nerves have been jangled by a baby’s howl or who have been riveted by the sight of an attractive person knows, nature has evolved sensory systems to be exquisitely tuned to relevant input. A major question in neurobiology is how neurons tune the strength of their interconnections to optimally respond to such inputs.



Neuronal circuitry consists of a web of neurons, each triggering others by launching bursts of neurotransmitters at targets on receiving neurons to produce nerve impulses in those targets. Neurons adjust the strength of those connections adaptively, to amplify or suppress connections. Some four decades ago, a general principle called the "efficient coding hypothesis" was formulated, holding that sensory systems adjust to efficiently represent the complex, dynamic sounds, sights, and other sensory input from the environment.

Writing in the August 4, 2005, issue of Neuron, researchers led by Christian K. Machens of Cold Spring Harbor Laboratory and Andreas Herz of Humboldt-University Berlin describe experiments with grasshopper auditory neurons that reveal new details of such sensory coding. Their findings show that "optimal stimulus ensembles" that trigger the neurons differ from those the grasshopper hears in the natural environment but largely overlap with components of natural sounds found in mating and mate-location calls.


In their experiments, the researchers first played various snippets of white noise to isolated grasshopper auditory nerves and measured the electrophysiological signals reflecting the reactions of the auditory neurons to those sounds. These experiments revealed the distribution of stimuli called the "optimal stimulus ensemble" (OSE) that allowed the neurons in the system to perform optimally.

Once the researchers had characterized the OSE, they then analyzed how this measure compared to the neuronal response to natural sounds--including environmental sounds like the rustling of grass and insect communication signals such as grasshopper or cricket mating calls.

They found that the OSEs of the receptors particularly matched characteristic features of species-specific acoustic communication signals used by grasshoppers to attract mating partners.

"Hence, instead of maximizing the average information gained about natural stimuli, the receptors appear to maximize the information gained about specific, but less often occurring aspects of the stimuli," concluded the researchers. "This result suggests that an organism may seek to distribute its sensory resources according to the behavioral relevance of the natural important stimuli, rather than according to purely statistical principles.

"For instance, if a few important stimuli within the natural environment need to be encoded with high precision, a large part of a system’s coding capacity could be designated to encode these stimuli. Consequently, it may well be that even small subensembles strongly influence the coding strategy of sensory neurons. In this case, the optimal stimulus ensemble will not match the ensemble of all natural stimuli encountered by the particular species."

The researchers also concluded that "We therefore suggest that the coding strategy of sensory neurons is not matched to the statistics of natural stimuli per se, but rather to a weighted ensemble of natural stimuli, where the different behavioral relevance of stimuli determines their relative weight in the ensemble."

Machens, Herz, and their colleagues also concluded that their analytical technique could yield broader insight into the evolution of sensory circuitry.

"Our approach presents a systematic way to uncover potential mismatches between the statistical properties of the natural environment and the coding strategy of sensory neurons. In turn, these discrepancies might improve our understanding of the evolutionary design of the specific sensory system," they wrote.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.neuron.org

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>