Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding Fragile X syndrome with the blink of an eye

04.08.2005


While researchers have long known the genetic defect underlying Fragile X syndrome, they are still tracing how that defect creates the complex mix of mental retardation, hyperactive behavior, attention deficits, and other problems in the disorder. Fragile X is particularly important because it is the most common single-gene cause of mental retardation--affecting about 1 in 4000 males and 1 in 8000 females in the U.S.



In an article in the August 4, 2005, issue of Neuron, researchers led by Chris De Zeeuw of Erasmus University Rotterdam report that they have pinpointed a specific cause of defects in motor learning in Fragile X patients. Their work represents the first investigation of the role of abnormalities in the brain’s cerebellum in Fragile X syndrome.

Fragile X syndrome is caused by a defect in the Fragile X mental retardation 1 (Fmr1) gene, which in turns produces a nonfunctioning protein, FMRP. In their studies, De Zeeuw and colleagues studied the behavioral effects on motor learning and the effects on neurons in the cerebellum of knocking out this gene.


They found that mice lacking the gene showed deficits in a particular motor learning task known to be largely controlled by the cerebellum. In this "eyeblink conditioning" task, the mice were taught to associate a stimulus such as a tone with a puff of air on their eye, and the blink response was measured as an indication of how well the animals could learn the task. The researchers found that mice completely lacking the Fmr1 gene showed deficits in the motor learning task. But most importantly, the researchers also found that mice lacking the Fmr1 gene only in specific neurons, called Purkinje cells, in the cerebellum showed the deficit.

Detailed electrophysiological studies of Purkinje cells in such mutant mice revealed that the cells showed an enhanced weakening of their signaling connections--called long-term depression. The researchers also found that the Purkinje cells showed abnormalities in structures called dendrites, which are the branches from nerve cells that contain the receiving stations for signals from other neurons.

When the researchers conducted similar eyeblink conditioning tests in Fragile X patients, they found the same severe deficits.

And when the researchers created a mathematical model of long-term depression, they found that they could link alteration in signaling between neurons in the cerebellum with impairment in motor learning processes.

"Thus, while a lack of FMRP in areas such as the cerebral cortex, amygdala, and hippocampus may induce cognitive symptoms in Fragile X syndrome, the current data allow us to conclude that a lack of functional FMRP in cerebellar P cells may equally well lead to deficits in motor learning in Fragile X patients," concluded the researchers.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>