Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Smart’ Bio-nanotubes Developed; May Help in Drug Delivery

04.08.2005


"Smart" bionanotubes. Lipid protein nanotubes made of microtuble protein (made of tubulin protein subunits shown as red-blue-yellow-green objects) that is coated by a lipid bilayer (drawn with yellow tails and green and white spherical heads) which in turn is coated by tubulin protein rings or spirals. By controlling the relative amount of lipid and protein it is possible to switch between two states of nanotubes with either open ends (shown in the center) or closed ends with lipid caps (shown on the left), a process which forms the basis for controlled chemical and drug encapsulation and release. A top view of the nanotubes and a magnified region is shown on the right. The image was created by Peter Allen.


Materials scientists working with biologists at the University of California, Santa Barbara have developed "smart" bio-nanotubes — with open or closed ends — that could be developed for drug or gene delivery applications.

The nanotubes are "smart" because in the future they could be designed to encapsulate and then open up to deliver a drug or gene in a particular location in the body. The scientists found that by manipulating the electrical charges of lipid bilayer membranes and microtubules from cells, they could create open or closed bio-nanotubes, or nanoscale capsules. The news is reported in an article to be published in the August 9 issue of the Proceedings of the National Academy of Sciences. It is currently available on-line in the PNAS Early Edition.

The findings resulted from a collaboration between the laboratories of Cyrus R. Safinya, professor of materials and physics and faculty member of the Molecular, Cellular, and Developmental Biology Department, and Leslie Wilson, professor of biochemistry in the Department of Molecular, Cellular and Developmental Biology and the Biomolecular Science and Engineering Program. The first author of the article is Uri Raviv, a post-doctoral researcher in Safinya’s lab and a fellow of the International Human Frontier Science Program Organization. The other co-authors are Daniel J. Needleman, formerly Safinya’s graduate student who is now a postdoctoral fellow at Harvard Medical School; Youli Li, researcher in the Materials Research Laboratory; and Herbert P. Miller, staff research associate in the Department of Molecular, Cellular and Developmental Biology.



The scientists used microtubules purified from the brain tissue of a cow for their experiments. Microtubules are nanometer-scale hollow cylinders derived from the cell cytoskeleton. In an organism, microtubules and their assembled structures are critical components in a broad range of cell functions –– from providing tracks for the transport of cargo to forming the spindle structure in cell division. Their functions include the transport of neurotransmitter precursors in neurons.

"In our paper, we report on a new paradigm for lipid self-assembly leading to nanotubule formation in mixed charged systems," said Safinya.

Raviv explained, "We looked at the interaction between microtubules –– negatively charged nanometer-scale hollow cylinders derived from cell cytoskeleton –– and cationic (positively charged) lipid membranes. We discovered that, under the right conditions, spontaneous lipid protein nanotubules will form."

They used the example of water beading up or coating a car, depending on whether or not the car has been waxed. Likewise the lipid will either bead up on the surface of the microtubule, or flatten out and coat the whole cylindrical surface of the microtubule, depending on the charge.

The new type of self-assembly arises because of an extreme mismatch between the charge densities of microtubules and cationic lipid, explained Raviv. "This is a novel finding in equilibrium self-assembly," he said.

The nanotubule consisting of a three-layer wall appears to be the way the system compensates for this charge density mismatch, according to the authors.

"Very interestingly, we have found that controlling the degree of overcharging of the lipid-protein nanotube enables us to switch between two states of nanotubes," said Safinya. "With either open ends (negative overcharged), or closed ends (positive overcharged with lipid caps), these nanotubes could form the basis for controlled chemical and drug encapsulation and release."

The inner space of the nanotube in these experiments measures about 16 nanometers in diameter. (A nanometer is a billionth of a meter.) The whole capsule is about 40 nanometers in diameter.

Raviv explained that the chemotherapy drug Taxol is one type of drug that could be delivered with these nanotubes. The scientists are already using Taxol in their experiments to stabilize and lengthen the lipid-protein nanotubes.

The work was performed using state-of-the-art synchrotron x-ray scattering techniques at the Stanford Synchrotron Radiation Laboratory (SSRL), combined with sophisticated electron microscopy at UCSB. The work was funded by the National Institutes of Health and the National Science Foundation. SSRL is supported by the U.S. Department of Energy. Raviv was also supported by the International Human Frontier Science Program and the European Molecular Biology Organization.

Gail Gallessich | EurekAlert!
Further information:
http://www.pnas.org/cgi/content/abstract/0502183102v1
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>