Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory tests sex ratios under asymmetrical local mate competition among parasitoid wasps

04.08.2005


For many species, the ratio of sons to daughters a mother produces can have a profound effect on her evolutionary success. Too many sons, or too many daughters, may mean a female does not pass on as many copies of her genes to the next generation as another mother. The crucial determinant of sex ratio for many species will be how likely related individuals will interact, in particular whether brothers will be competing amongst themselves to mate with their sisters. This situation becomes increasingly likely in species with very structured populations, where only one or a few females will produce offspring locally, and related males and females will be mating with each other. To reduce this local mate competition between sons, mothers should bias the sex ratio towards daughters, reducing male competition and providing them each with more females to mate with.



Parasitic wasps that lay their eggs on insect hosts often have such a population structure, and work has shown that sex ratios vary with the number of females contributing to a host or group of hosts, as expected. For example, in the parasitic wasp Nasonia vitripennis, females vary their offspring sex ratios in response to both the presence of other females on a patch, and the presence of eggs already laid on the host they are about to use themselves. However, often groups of hosts will be a mixture of parasitised and unparasitised hosts, and the mating environment will be influenced by wasps emerging from all the parasitised hosts, some related to each other but some not.

In a new study featured in the September issue of The American Naturalist, David M. Shuker (University of Edinburgh) and colleagues show that females alter the sex ratio they produce on a host by considering whether there are already eggs on the host they are using and if there are other eggs already laid on other hosts in the patch. The researchers developed a new theory to explain what the best sex ratios should be for different situations and to demonstrate that females qualitatively confirm these novel predictions. This suggests that females are incredibly subtle in their use of information from the whole patch when it comes to making their sex ratio decisions.

Carrie Olivia Adams | EurekAlert!
Further information:
http://www.journals.uchicago.edu/AN
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>