Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy works in mice to prevent blindness that strikes boys

03.08.2005


First treatment for incurable disease comes into focus



University of Florida scientists used a healthy human gene to prevent blindness in mice with a form of an incurable eye disease that strikes boys.

Writing in the August issue of Molecular Therapy, scientists from the UF Genetics Institute describe how they successfully used gene therapy in mice to treat retinoschisis, a rare genetic disorder that is passed from mothers, who retain their sight, to their sons.


"Currently there is no treatment," said William Hauswirth, Ph.D., the Rybaczki-Bullard professor of ophthalmic molecular genetics. "These children lose their sight gradually, often with devastating results. What happens is the retina actually begins to split in the middle, causing loss of central vision - that’s the vision that you need to be able to read or walk around."

Scientists say the gene transfer method eventually could be applied to many eye diseases caused by single gene defects, including a host of retinal disorders.

Retinoschisis is usually first detected in boys between 5 and 10 years of age when their vision problems cause reading difficulties. In a healthy eye, retinal cells secrete a protein called retinoschisin, or RS1, which acts like glue to connect the layers of the retina. Without it, the layers separate and tiny cysts form, devastating the vision and often leading to blindness in about 1 of every 5,000 boys.

UF researchers injected a healthy version of the human RS1 gene to the sub-retinal space of the right eyes of 15-day-old male mice, which, like boys with the disease, don’t have the healthy gene to maintain the retina. In terms of disease development, the condition in the mice was roughly equivalent to retinoschisis in a 10-year-old boy.

Six months later, researchers looked at the interior of the eyes with a laser ophthalmoscope and found cyst formation was clearly evident in the untreated eyes, but the treated eyes appeared healthy. The eye’s photoreceptor cells - the rods and cones that help the brain process light and color - were spared from the disease and the connections between the layers of the retinas were intact.

In addition, the protein appears capable of moving within the retina to its target sites and the beneficial changes appear to be long lasting, researchers said. Especially encouraging were signs the treatment may be able to repair retinal damage.

The treatment has promising implications for other genetic eye diseases that involve the eye’s ability to process light, including retinitis pigmentosa, which affects about 200,000 people in the United States and is one of the most common inherited causes of blindness in people between the ages of 20 and 60.

"We’ve been very successful in curing a disease in mice that has a direct copy in humans," said Hauswirth, who, in conjunction with UF, has interest in a biotechnology company that may seek to market some of the research technology. "It may take two to five years before we try this in human patients because of the need for safety studies, but we feel based on success so far, we will be able to provide formal evidence for safety that will allow us to get treatment into the clinic."

UF researchers worked with Bernhard Weber, Ph.D., at the Institute of Human Genetics in Regensburg, Germany, and Robert Molday, Ph.D., director of the Center for Macular Research at the University of British Columbia in Vancouver.

The Foundation Fighting Blindness, the National Institutes of Health and the Macula Vision Research Foundation supported the research.

"We now have proof of principle that gene therapy can basically prevent retinoschisis," said Stephen Rose, Ph.D., chief research officer for the Maryland-based Foundation Fighting Blindness. "Furthermore, this therapy apparently demonstrates that even if disease has begun, there is a healing that takes place. That raises hope for suffering patients that we may be able to offer something that can improve the quality of their lives."

John Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>