Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy works in mice to prevent blindness that strikes boys

03.08.2005


First treatment for incurable disease comes into focus



University of Florida scientists used a healthy human gene to prevent blindness in mice with a form of an incurable eye disease that strikes boys.

Writing in the August issue of Molecular Therapy, scientists from the UF Genetics Institute describe how they successfully used gene therapy in mice to treat retinoschisis, a rare genetic disorder that is passed from mothers, who retain their sight, to their sons.


"Currently there is no treatment," said William Hauswirth, Ph.D., the Rybaczki-Bullard professor of ophthalmic molecular genetics. "These children lose their sight gradually, often with devastating results. What happens is the retina actually begins to split in the middle, causing loss of central vision - that’s the vision that you need to be able to read or walk around."

Scientists say the gene transfer method eventually could be applied to many eye diseases caused by single gene defects, including a host of retinal disorders.

Retinoschisis is usually first detected in boys between 5 and 10 years of age when their vision problems cause reading difficulties. In a healthy eye, retinal cells secrete a protein called retinoschisin, or RS1, which acts like glue to connect the layers of the retina. Without it, the layers separate and tiny cysts form, devastating the vision and often leading to blindness in about 1 of every 5,000 boys.

UF researchers injected a healthy version of the human RS1 gene to the sub-retinal space of the right eyes of 15-day-old male mice, which, like boys with the disease, don’t have the healthy gene to maintain the retina. In terms of disease development, the condition in the mice was roughly equivalent to retinoschisis in a 10-year-old boy.

Six months later, researchers looked at the interior of the eyes with a laser ophthalmoscope and found cyst formation was clearly evident in the untreated eyes, but the treated eyes appeared healthy. The eye’s photoreceptor cells - the rods and cones that help the brain process light and color - were spared from the disease and the connections between the layers of the retinas were intact.

In addition, the protein appears capable of moving within the retina to its target sites and the beneficial changes appear to be long lasting, researchers said. Especially encouraging were signs the treatment may be able to repair retinal damage.

The treatment has promising implications for other genetic eye diseases that involve the eye’s ability to process light, including retinitis pigmentosa, which affects about 200,000 people in the United States and is one of the most common inherited causes of blindness in people between the ages of 20 and 60.

"We’ve been very successful in curing a disease in mice that has a direct copy in humans," said Hauswirth, who, in conjunction with UF, has interest in a biotechnology company that may seek to market some of the research technology. "It may take two to five years before we try this in human patients because of the need for safety studies, but we feel based on success so far, we will be able to provide formal evidence for safety that will allow us to get treatment into the clinic."

UF researchers worked with Bernhard Weber, Ph.D., at the Institute of Human Genetics in Regensburg, Germany, and Robert Molday, Ph.D., director of the Center for Macular Research at the University of British Columbia in Vancouver.

The Foundation Fighting Blindness, the National Institutes of Health and the Macula Vision Research Foundation supported the research.

"We now have proof of principle that gene therapy can basically prevent retinoschisis," said Stephen Rose, Ph.D., chief research officer for the Maryland-based Foundation Fighting Blindness. "Furthermore, this therapy apparently demonstrates that even if disease has begun, there is a healing that takes place. That raises hope for suffering patients that we may be able to offer something that can improve the quality of their lives."

John Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>