Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link between Alzheimer’s disease and traumatic brain damage clarified

03.08.2005


This week scientists of the Flanders Interuniversity Institute for Biotechnology (VIB) will once again publish a breakthrough in their research regarding Alzheimer’s disease. The researchers, this time connected to the Catholic University of Leuven, discovered the function of one of the most important proteins related to Alzheimer’s disease. They have indicated that the protein stimulates the growth of nerve paths in the brain, which is essential for recovery after brain damage. The results are published in the authoritative journal EMBO Journal.



The normal function of the amyloidal precursor protein or APP clarified

It has been known for several years that APP is relevant in Alzheimer’s disease. APP is the precursor of the amyloidal-ß protein that causes the typical ‘plaques’ in the brains of patients. The normal function of APP was, however, not known. Maarten Leyssen and his colleagues have indicated that APP stimulates the development of nerve paths. Intact nerve paths are essential for the proper functioning of the brain. These connections can be damaged after traumatic brain damage resulting in the improper functioning of the brain. APP is responsible for stimulating the development of new nerve paths.


APP and Alzheimer’s disease

These results also aid better understanding of certain aspects of Alzheimer’s disease, where APP plays a major role. The fruit fly – an ideal model to study the brain’s action – indicates that APP increases considerably after brain damage, namely in areas where new nerve paths need to be formed. Because more APP is made, more plaques can develop in the brain, a typical symptom of Alzheimer’s disease. For the first time the results of VIB researchers explain the strong link between brain damage and Alzheimer’s disease: not only do patients with major brain damage have more chance of developing Alzheimer’s disease later on in life, their brains also often show plaques that strongly resemble those of Alzheimer patients.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>