Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Master regulatory gene found that guides fate of blood-producing stem cells

02.08.2005


Discovery may lead to new therapies for leukemia, other blood disorders



Researchers from the University of Pennsylvania School of Medicine found that a protein called NF-Ya activates several genes known to regulate the development of hematopoietic stem cells (HSC), or blood-producing stem cells, in bone marrow. Knowing the details of this pathway may one day lead to new treatments for such blood diseases as leukemia, as well as a better understanding of how HSCs work in the context of bone-marrow and peripheral-stem-cell transplantation. The authors published their findings in the early August issue of the Proceedings of the National Academy of Sciences.

"Understanding the biology behind how the body precisely controls stem-cell fate is one of the most important issues in stem-cell biology," says senior author Stephen G. Emerson, MD, PhD, Associate Director of Clinical Research for Penn’s Abramson Cancer Center and Chief of the Division of Hematology-Oncology. When HSCs divide, they have one of three fates: develop into two more stem cells, which is called self-renewal; differentiate to become one of several mature blood-cell types; or strike a balance in which one daughter cell becomes an HSC and the other becomes a mature blood-cell type.


"We know that in diseases like leukemia, the first scenario-no differentiated cells, two HCSs developing-must occur because more and more stem cells are made," explains Emerson. In conditions like bone-marrow failure, the second scenario-two differentiated cells and no HCSs-happens because the body runs out of HSCs.

"We want to figure out how this process is normally regulated in the body, so that we can learn to control it for therapeutic purposes," says Emerson. "For some clinical purposes, we might want to shift the balance so that we can grow more stem cells, for those who need them. Conversely, for patients in whom this process has gone awry, such as acute leukemia, we might block the regulatory gene to shift the balance of self-renewal versus differentiation so that all the immature, leukemic cells differentiate and die.

Over the past 10 years, several gene families have been suggested to be important in regulating HSC fate-for example homebox, wnt, notch 1, and telomerase genes. Emerson and colleagues figured that one transcription factor, called NF-Y, was required for activating promoters of all of these genes. What’s more, they found that fully assembled NF-Y was activated in stem cells and disappeared when the stem cells became mature cell types, through the induction and loss of one its subunits, NF-Ya.

"When we overexpressed NF-Ya in stem cells, the stem cells produced ten- to twenty-fold more stem cells after transplantation," says Emerson. "This makes NF-Ya the prime candidate for a master-regulatory gene for multiple, if not all, stem-cell division programs." NF-Ya would be considered the master regulatory gene since it activates multiple HSC regulatory genes and promotes HSC self-renewal.

Practically, the researchers’ goal is to find a way to control stem-cell fate by biochemically turning NF-Ya on or off at will, to either make more stem cells in the case of bone-marrow failure and for transplantation, or to force the cells to differentiate, in the case of leukemia, where too many HSCs are made.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news.

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>