Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers discover key to how SARS virus infects cells

02.08.2005


Inhibitors of cellular enzymes could be developed for SARS treatment



Researchers from the University of Pennsylvania School of Medicine have found that inhibitors of an enzyme called cathepsin L prevent the SARS (severe acute respiratory syndrome) virus from entering target cells. SARS is caused by an emergent coronavirus. There is no effective treatment at this time.

This study also demonstrates a new mechanism for how viral proteins are activated within host cells, states senior author Paul Bates, PhD, an Associate Professor in the Department of Microbiology. Bates and first author Graham Simmons, PhD, Research Associate, also in the Department of Microbiology, published their findings in the early August issue of the Proceedings of the National Academy of Sciences.


To gain entry, a virus binds to receptors on the surface of the host cell, and is taken up into a vesicle, or sphere, inside the cell. Unlike most known viruses, the SARS coronavirus (like the Ebola virus) needs one more step to infect the cell. The proteins within the membrane of both SARS and Ebola need to be cut by special cellular enzymes (cathepsins) in order to replicate within the host cell. Cathepsins act in the low pH (acidic) environment inside the vesicle, facilitating fusion of the viral membrane and the vesicle membrane, so that viral proteins and nucleic acids can enter the cell where viral replication occurs.

"This paper changes the thinking of the field," says Bates. "Up to this point, everyone thought all of the activation steps were at the cell surface or due to the low pH environment in the vesicle. Our paper shows that it’s not just low pH, but the cathepsin proteases in the vesicles that clip the viral protein. This gives us a new target to address in the development of therapeutics against the SARS virus."

The researchers found that several chemical inhibitors of cathepsin activity blocked infection of human cell lines by the SARS virus, which were grown in a high-level safety laboratory. In general, these findings, say the researchers, have led to a better understanding that the cutting of viral protein by cathepsins is necessary for infectivity and is likely not unique because both the SARS and Ebola viruses are now known to use a similar mechanism to invade their host cells. (In June 2005, a group from Harvard School of Medicine discovered that the Ebola viral membrane protein is similarly activated by cathepsin L and B.)

If these proteases are important for other viruses, they represent a new way to stop viral infection. SARS and Ebola are the first examples of the need for these proteins to be cleaved during infection of the host cell.

This work is a joint collaboration between the Bates lab and the research group led by Scott L. Diamond, PhD, Director of the Penn Center for Molecular Discovery, one of nine facilities that the National Institutes of Health (NIH) is establishing as part of the Molecular Library Screening Center Network. Diamond is also Professor of Chemical and Biomolecular Engineering within the Institute for Medicine and Engineering at Penn. While independently screening for inhibitors, Diamond’s lab found a cathepsin L inhibitor called MDL28170, which Bates and Simmons tested for efficacy in inhibiting SARS coronavirus infection. The cellular cathepsin enzymes have many other roles within the body, including mediating the inflammatory immune response in the lungs and antigen processing in T cells.

The Bates research group, in collaboration with the Diamond group, has identified a few compounds, including MDL28170, which they plan to test in animals for SARS inhibition. "We’re now searching for other viruses that also use this cleaving mechanism for activating their proteins," says Bates. "If there are a number of other viruses that do that, and we have some preliminary evidence to suggest this, then we can develop small molecule inhibitors as possible therapeutics." One advantage of this approach is that oral medications made from small-molecule inhibitors are more readily made and distributed in the developing world-as opposed to a vaccine, suggests Bates. Protease inhibitors active against cathepsins have been tested in mice with no ill side effects, which bodes well for their eventual testing in humans.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>