Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers discover key to how SARS virus infects cells

02.08.2005


Inhibitors of cellular enzymes could be developed for SARS treatment



Researchers from the University of Pennsylvania School of Medicine have found that inhibitors of an enzyme called cathepsin L prevent the SARS (severe acute respiratory syndrome) virus from entering target cells. SARS is caused by an emergent coronavirus. There is no effective treatment at this time.

This study also demonstrates a new mechanism for how viral proteins are activated within host cells, states senior author Paul Bates, PhD, an Associate Professor in the Department of Microbiology. Bates and first author Graham Simmons, PhD, Research Associate, also in the Department of Microbiology, published their findings in the early August issue of the Proceedings of the National Academy of Sciences.


To gain entry, a virus binds to receptors on the surface of the host cell, and is taken up into a vesicle, or sphere, inside the cell. Unlike most known viruses, the SARS coronavirus (like the Ebola virus) needs one more step to infect the cell. The proteins within the membrane of both SARS and Ebola need to be cut by special cellular enzymes (cathepsins) in order to replicate within the host cell. Cathepsins act in the low pH (acidic) environment inside the vesicle, facilitating fusion of the viral membrane and the vesicle membrane, so that viral proteins and nucleic acids can enter the cell where viral replication occurs.

"This paper changes the thinking of the field," says Bates. "Up to this point, everyone thought all of the activation steps were at the cell surface or due to the low pH environment in the vesicle. Our paper shows that it’s not just low pH, but the cathepsin proteases in the vesicles that clip the viral protein. This gives us a new target to address in the development of therapeutics against the SARS virus."

The researchers found that several chemical inhibitors of cathepsin activity blocked infection of human cell lines by the SARS virus, which were grown in a high-level safety laboratory. In general, these findings, say the researchers, have led to a better understanding that the cutting of viral protein by cathepsins is necessary for infectivity and is likely not unique because both the SARS and Ebola viruses are now known to use a similar mechanism to invade their host cells. (In June 2005, a group from Harvard School of Medicine discovered that the Ebola viral membrane protein is similarly activated by cathepsin L and B.)

If these proteases are important for other viruses, they represent a new way to stop viral infection. SARS and Ebola are the first examples of the need for these proteins to be cleaved during infection of the host cell.

This work is a joint collaboration between the Bates lab and the research group led by Scott L. Diamond, PhD, Director of the Penn Center for Molecular Discovery, one of nine facilities that the National Institutes of Health (NIH) is establishing as part of the Molecular Library Screening Center Network. Diamond is also Professor of Chemical and Biomolecular Engineering within the Institute for Medicine and Engineering at Penn. While independently screening for inhibitors, Diamond’s lab found a cathepsin L inhibitor called MDL28170, which Bates and Simmons tested for efficacy in inhibiting SARS coronavirus infection. The cellular cathepsin enzymes have many other roles within the body, including mediating the inflammatory immune response in the lungs and antigen processing in T cells.

The Bates research group, in collaboration with the Diamond group, has identified a few compounds, including MDL28170, which they plan to test in animals for SARS inhibition. "We’re now searching for other viruses that also use this cleaving mechanism for activating their proteins," says Bates. "If there are a number of other viruses that do that, and we have some preliminary evidence to suggest this, then we can develop small molecule inhibitors as possible therapeutics." One advantage of this approach is that oral medications made from small-molecule inhibitors are more readily made and distributed in the developing world-as opposed to a vaccine, suggests Bates. Protease inhibitors active against cathepsins have been tested in mice with no ill side effects, which bodes well for their eventual testing in humans.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>