Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers discover key to how SARS virus infects cells

02.08.2005


Inhibitors of cellular enzymes could be developed for SARS treatment



Researchers from the University of Pennsylvania School of Medicine have found that inhibitors of an enzyme called cathepsin L prevent the SARS (severe acute respiratory syndrome) virus from entering target cells. SARS is caused by an emergent coronavirus. There is no effective treatment at this time.

This study also demonstrates a new mechanism for how viral proteins are activated within host cells, states senior author Paul Bates, PhD, an Associate Professor in the Department of Microbiology. Bates and first author Graham Simmons, PhD, Research Associate, also in the Department of Microbiology, published their findings in the early August issue of the Proceedings of the National Academy of Sciences.


To gain entry, a virus binds to receptors on the surface of the host cell, and is taken up into a vesicle, or sphere, inside the cell. Unlike most known viruses, the SARS coronavirus (like the Ebola virus) needs one more step to infect the cell. The proteins within the membrane of both SARS and Ebola need to be cut by special cellular enzymes (cathepsins) in order to replicate within the host cell. Cathepsins act in the low pH (acidic) environment inside the vesicle, facilitating fusion of the viral membrane and the vesicle membrane, so that viral proteins and nucleic acids can enter the cell where viral replication occurs.

"This paper changes the thinking of the field," says Bates. "Up to this point, everyone thought all of the activation steps were at the cell surface or due to the low pH environment in the vesicle. Our paper shows that it’s not just low pH, but the cathepsin proteases in the vesicles that clip the viral protein. This gives us a new target to address in the development of therapeutics against the SARS virus."

The researchers found that several chemical inhibitors of cathepsin activity blocked infection of human cell lines by the SARS virus, which were grown in a high-level safety laboratory. In general, these findings, say the researchers, have led to a better understanding that the cutting of viral protein by cathepsins is necessary for infectivity and is likely not unique because both the SARS and Ebola viruses are now known to use a similar mechanism to invade their host cells. (In June 2005, a group from Harvard School of Medicine discovered that the Ebola viral membrane protein is similarly activated by cathepsin L and B.)

If these proteases are important for other viruses, they represent a new way to stop viral infection. SARS and Ebola are the first examples of the need for these proteins to be cleaved during infection of the host cell.

This work is a joint collaboration between the Bates lab and the research group led by Scott L. Diamond, PhD, Director of the Penn Center for Molecular Discovery, one of nine facilities that the National Institutes of Health (NIH) is establishing as part of the Molecular Library Screening Center Network. Diamond is also Professor of Chemical and Biomolecular Engineering within the Institute for Medicine and Engineering at Penn. While independently screening for inhibitors, Diamond’s lab found a cathepsin L inhibitor called MDL28170, which Bates and Simmons tested for efficacy in inhibiting SARS coronavirus infection. The cellular cathepsin enzymes have many other roles within the body, including mediating the inflammatory immune response in the lungs and antigen processing in T cells.

The Bates research group, in collaboration with the Diamond group, has identified a few compounds, including MDL28170, which they plan to test in animals for SARS inhibition. "We’re now searching for other viruses that also use this cleaving mechanism for activating their proteins," says Bates. "If there are a number of other viruses that do that, and we have some preliminary evidence to suggest this, then we can develop small molecule inhibitors as possible therapeutics." One advantage of this approach is that oral medications made from small-molecule inhibitors are more readily made and distributed in the developing world-as opposed to a vaccine, suggests Bates. Protease inhibitors active against cathepsins have been tested in mice with no ill side effects, which bodes well for their eventual testing in humans.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>