Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists characterize proteome of human cornea

02.08.2005


An international group of researchers has characterized the proteome of the human cornea. In doing so, they have identified 141 distinct proteins, 99 of which had not been previously recognized in mammalian corneas. The details of their findings appear in the August/September issue of Molecular and Cellular Proteomics, an American Society for Biochemistry and Molecular Biology journal.



The cornea is the transparent, dome-shaped window that covers the front of the eye. Although it is clear and seems to lack substance, the cornea is actually a highly organized group of cells and proteins. Its functions include shielding the eye from germs, dust, UV light, and other harmful matter and acting as the eye’s outermost lens.

Approximately 120 million people in the United States wear eyeglasses or contact lenses to correct nearsightedness, farsightedness, or astigmatism. These vision disorders are often the result of incorrect curvature or irregular shape of the cornea and are the most common vision disorders in this country. Other diseases that affect the cornea range from bacterial, fungal, and viral infections (keratitis) and allergies to various dystrophies including keratoconus.


"Corneal damage and disorders account for several million cases of impaired vision and are second to cataracts as the most important cause of blindness in the world," explains study author Dr. Jan J. Enghild of the University of Aarhus in Denmark. "Corneal infections by bacteria, fungi, or viruses are common disorders that can lead to corneal opacification. A group of inherited corneal disorders including granular and lattice corneal dystrophies are characterized by deposition of insoluble and opaque macromolecules in the cornea. Other disorders associated with loss of corneal transparency arise from cornea swelling (Fuchs’ dystrophy) or thinning and change of curvature of the cornea (keratoconus)."

In order to learn more about the cornea and corneal disorders, Dr. Enghild and colleagues characterized the most abundant proteins found in the non-diseased human cornea. They identified 141 distinct proteins, 70% of which have not previously been identified in the cornea. This work is the most comprehensive protein study of the cornea to date.

"Surprisingly, about 15% of the identified proteins in the cornea are classical blood proteins, which indicate that they originate from the blood stream around the cornea and are not produced in the cornea," notes Dr. Enghild. "Our results also showed that proteolysis and post-translational modifications of proteins are common events in the normal human cornea."

Among the molecules that the scientists identified were proteins involved in antimicrobial defense, heme and iron transport, tissue protection against UV-radiation and oxidative stress. Several other proteins were known antiangiogenic factors, which prevent the formation of blood vessels.

The results from this research may open the door to future therapeutics for a myriad of corneal disorders. "It is essential to know the biochemical composition of normal healthy corneas in the effort to understand the molecular mechanisms behind corneal disorders," emphasizes Dr. Enghild. "By comparative proteomic studies of diseased and normal corneas we can identify differences in the expression profiles that may suggest avenues for therapeutic interventions. Because the cornea is so accessible, the potential for developing effective drugs for the treatment of corneal diseases is good. Furthermore, the work is likely to improve the clinical classifications of corneal diseases. Identification of the protein profile of the normal human cornea may also be very useful in the effort toward generating artificial corneas for transplantation."

To follow up on their initial research, Dr. Enghild and his colleagues have begun proteomic studies of corneas affected by granular and lattice corneal dystrophies, and are also planning on looking at other cornea diseases such as keratoconus and Fuchs’ dystrophy.

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.mcponline.org/cgi/content/abstract/D500003-MCP200v1

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>