Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecule may aid in production of biofuels and fungi-resistant plants

02.08.2005


In a recent study published in the Journal of Biological Chemistry, scientists report on the discovery of a new molecule that is essential for degradation of the biopolymer chitin. This new molecule could eventually aid in the engineering of fungi-resistant plants and could also lead to the discovery of similar molecules that can be used in cellulose-based biofuel production.



The research appears as the "Paper of the Week" in the August 5 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

"Chitin is an insoluble molecule that consists of tightly packed chains of polymerized sugars," explains study author Dr. Vincent G. H. Eijsink of the Norwegian University of Life Sciences. "It is synthesized by different crustaceans, mollusks, algae, insects, fungi and yeasts and is a major structural component of these organisms. For example, chitin gives strength and stiffness to the shells/cuticles of shrimps and insects and to the cell walls of fungi. Because chitin is an abundant resource and, most importantly, because it occurs in several types of plague organisms and parasites, chitin degradation is of great interest to humanity. For example, insects might be combated by interfering with their chitin metabolism. Insect viruses need to degrade insect chitin for infection. Fungi may also be combated by degrading the chitin in their cell walls."


More than one billion tons of chitin are produced by insects, fungi, and marine organisms every year. Despite this abundant production, chitin does not accumulate in most ecosystems, indicating that the molecule is somehow degraded. Many aquatic and terrestrial microorganisms produce enzymes called chitinases which are responsible for breaking down chitin. Because chitin is a very tough molecule, chitinases have quite a challenge. In order to break the bonds between the sugar units, they must gain access to the bonds by somehow disrupting the packing of the sugar chains in the chitin molecule. How exactly chitinases overcome these challenges has been unclear until now.

Interested in learning more about how the breakdown of chitin occurs, Dr. Eijsink and his colleagues investigated chitin degradation by the soil bacterium Serratia marcescens. They discovered that in addition to producing chitinases, the bacterium also make a protein called CBP21 which binds to and disrupts the chitin polymer making it more accessible to degradation by chitinases. They showed that adding CBP21 dramatically speeds up the degradation of chitin by chitinases. CBP21 works by binding to chitin through highly specific interactions that disrupt the chitin structure making the individual sugar chains in the chitin polymer more amenable to enzymatic degradation.

The discovery of this new protein that participates in chitin degradation has many potential applications. For example, transgenic plants that expresses both chitinases and CBP21 would be able to combat fungi by degrading chitin in their cell walls. And, a better understanding of natural chitin turnover increases our ability to interfere with chitin metabolism in insects and other plague organisms.

CBP21 also has the potential to aid in the production of biofuel. "In principle, large quantities of chitin are available for exploration, primarily due to fishing and farming of crustaceans such as shrimps," says Dr. Eijsink. "However, a current lack of technology limits the exploitation of these waste streams. CBP21-like proteins may become an important tool for effective, enzymatic processing of this valuable resource. More in general, one might say that our discovery may lead to discovery of proteins with similar functions in cellulose processing. This may be of major important for the cellulose field and production of biofuel."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org
http://www.jbc.org/cgi/content/short/280/31/28492

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>