Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecule may aid in production of biofuels and fungi-resistant plants

02.08.2005


In a recent study published in the Journal of Biological Chemistry, scientists report on the discovery of a new molecule that is essential for degradation of the biopolymer chitin. This new molecule could eventually aid in the engineering of fungi-resistant plants and could also lead to the discovery of similar molecules that can be used in cellulose-based biofuel production.



The research appears as the "Paper of the Week" in the August 5 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

"Chitin is an insoluble molecule that consists of tightly packed chains of polymerized sugars," explains study author Dr. Vincent G. H. Eijsink of the Norwegian University of Life Sciences. "It is synthesized by different crustaceans, mollusks, algae, insects, fungi and yeasts and is a major structural component of these organisms. For example, chitin gives strength and stiffness to the shells/cuticles of shrimps and insects and to the cell walls of fungi. Because chitin is an abundant resource and, most importantly, because it occurs in several types of plague organisms and parasites, chitin degradation is of great interest to humanity. For example, insects might be combated by interfering with their chitin metabolism. Insect viruses need to degrade insect chitin for infection. Fungi may also be combated by degrading the chitin in their cell walls."


More than one billion tons of chitin are produced by insects, fungi, and marine organisms every year. Despite this abundant production, chitin does not accumulate in most ecosystems, indicating that the molecule is somehow degraded. Many aquatic and terrestrial microorganisms produce enzymes called chitinases which are responsible for breaking down chitin. Because chitin is a very tough molecule, chitinases have quite a challenge. In order to break the bonds between the sugar units, they must gain access to the bonds by somehow disrupting the packing of the sugar chains in the chitin molecule. How exactly chitinases overcome these challenges has been unclear until now.

Interested in learning more about how the breakdown of chitin occurs, Dr. Eijsink and his colleagues investigated chitin degradation by the soil bacterium Serratia marcescens. They discovered that in addition to producing chitinases, the bacterium also make a protein called CBP21 which binds to and disrupts the chitin polymer making it more accessible to degradation by chitinases. They showed that adding CBP21 dramatically speeds up the degradation of chitin by chitinases. CBP21 works by binding to chitin through highly specific interactions that disrupt the chitin structure making the individual sugar chains in the chitin polymer more amenable to enzymatic degradation.

The discovery of this new protein that participates in chitin degradation has many potential applications. For example, transgenic plants that expresses both chitinases and CBP21 would be able to combat fungi by degrading chitin in their cell walls. And, a better understanding of natural chitin turnover increases our ability to interfere with chitin metabolism in insects and other plague organisms.

CBP21 also has the potential to aid in the production of biofuel. "In principle, large quantities of chitin are available for exploration, primarily due to fishing and farming of crustaceans such as shrimps," says Dr. Eijsink. "However, a current lack of technology limits the exploitation of these waste streams. CBP21-like proteins may become an important tool for effective, enzymatic processing of this valuable resource. More in general, one might say that our discovery may lead to discovery of proteins with similar functions in cellulose processing. This may be of major important for the cellulose field and production of biofuel."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org
http://www.jbc.org/cgi/content/short/280/31/28492

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>