Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human cerebellum and cortex age in very different ways

02.08.2005


’Aging profile’ of the human brain also differs greatly from that seen in chimpanzees



Researchers have found that the two primary areas of the human brain appear to age in radically different ways: The cortex used in higher-level thought undergoes more extensive changes with age than the cerebellum, which regulates basic processes such as heartbeat, breathing and balance. Their work, based on an analysis of gene expression in various areas of human and chimpanzee brains, also shows that the two species’ brains age very differently, despite their close evolutionary relationship.

The research, by scientists at Harvard University, the University of California, Berkeley, Lawrence Berkeley National Laboratory, and the Max-Planck-Institute for Evolutionary Anthropology, will be reported this week in the open-access journal PLoS Biology.


"We were surprised both by the homogeneity of aging within the cortex and by the dramatic differences in aging between cortex and cerebellum," says Joshua B. Plotkin, a junior fellow in the Harvard Society of Fellows. "The fact that gene activity levels in the cerebellum remain more stable as a person ages suggests that this region of the brain experiences less oxidative stress and damage as part of normal aging."

"Much remains to be learned about how the brain ages and how changes in gene expression over time are related to brain activity," says Michael B. Eisen, assistant professor of molecular and cell biology at UC Berkeley. "Our analyses suggest that the different functions of different regions of the brain influence how they age, and that we can learn about functional variation and evolution by studying gene expression changes with age."

The researchers used data from gene chips to look at gene expression -- the degree to which various genes are turned "on" and "off" -- in five different regions of the brain’s cortex. They found that in all five cortical areas, brain changes with aging were pronounced and consistent. Changes in gene expression in the cerebellum were smaller and less coordinated.

The study by Plotkin, Eisen, Berkeley graduate student Hunter B. Fraser, and Philipp Khaitovich and Svante Paabo from the Max-Planck-Institute in Leipzig, Germany, is one of many conducted to date on the question of how gene expression changes across the human lifespan, but the first to examine how the two major brain areas age differently. Scientists had also not previously compared the effects of aging on the brains of humans and other primates.

"The fact that chimpanzees’ brains age so differently from our own suggests that our closest evolutionary relatives may use their brains very differently than we do," Plotkin says. "It appears that genome-wide patterns of aging evolve very rapidly."

The scientists say their results may cast some doubt on the effectiveness of mice and other species to model various types of neurodegenerative disease: If human and chimpanzee brains age in markedly dissimilar ways, the difference between humans and more distantly related species is likely greater yet.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>