Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human cerebellum and cortex age in very different ways

02.08.2005


’Aging profile’ of the human brain also differs greatly from that seen in chimpanzees



Researchers have found that the two primary areas of the human brain appear to age in radically different ways: The cortex used in higher-level thought undergoes more extensive changes with age than the cerebellum, which regulates basic processes such as heartbeat, breathing and balance. Their work, based on an analysis of gene expression in various areas of human and chimpanzee brains, also shows that the two species’ brains age very differently, despite their close evolutionary relationship.

The research, by scientists at Harvard University, the University of California, Berkeley, Lawrence Berkeley National Laboratory, and the Max-Planck-Institute for Evolutionary Anthropology, will be reported this week in the open-access journal PLoS Biology.


"We were surprised both by the homogeneity of aging within the cortex and by the dramatic differences in aging between cortex and cerebellum," says Joshua B. Plotkin, a junior fellow in the Harvard Society of Fellows. "The fact that gene activity levels in the cerebellum remain more stable as a person ages suggests that this region of the brain experiences less oxidative stress and damage as part of normal aging."

"Much remains to be learned about how the brain ages and how changes in gene expression over time are related to brain activity," says Michael B. Eisen, assistant professor of molecular and cell biology at UC Berkeley. "Our analyses suggest that the different functions of different regions of the brain influence how they age, and that we can learn about functional variation and evolution by studying gene expression changes with age."

The researchers used data from gene chips to look at gene expression -- the degree to which various genes are turned "on" and "off" -- in five different regions of the brain’s cortex. They found that in all five cortical areas, brain changes with aging were pronounced and consistent. Changes in gene expression in the cerebellum were smaller and less coordinated.

The study by Plotkin, Eisen, Berkeley graduate student Hunter B. Fraser, and Philipp Khaitovich and Svante Paabo from the Max-Planck-Institute in Leipzig, Germany, is one of many conducted to date on the question of how gene expression changes across the human lifespan, but the first to examine how the two major brain areas age differently. Scientists had also not previously compared the effects of aging on the brains of humans and other primates.

"The fact that chimpanzees’ brains age so differently from our own suggests that our closest evolutionary relatives may use their brains very differently than we do," Plotkin says. "It appears that genome-wide patterns of aging evolve very rapidly."

The scientists say their results may cast some doubt on the effectiveness of mice and other species to model various types of neurodegenerative disease: If human and chimpanzee brains age in markedly dissimilar ways, the difference between humans and more distantly related species is likely greater yet.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>