Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Customized gene chip provides rapid detection of genetic changes in children’s cancer

02.08.2005


Microarray scans DNA regions in neuroblastoma tumors to forecast outcomes, guide treatments



Genetics researchers have developed a customized gene chip to rapidly scan tumor samples for specific DNA changes that offer clues to prognosis in cases of neuroblastoma, a common form of children’s cancer. Rather than covering the entire genome, the microarray focuses on suspect regions of chromosomes for signs of deleted genetic material known to play a role in the cancer.

The investigators, from The Children’s Hospital of Philadelphia and Thomas Jefferson University, say their technique may be readily adapted for other types of cancer. The proof-of-principle study appears in the August issue of Genome Research.


One advantage of their technique is its flexibility, said co-author John M. Maris, M.D., a pediatric oncologist at The Children’s Hospital of Philadelphia. "As future research identifies other genes active in neuroblastoma, we can modify the microarray to include such regions," he added.

"We have customized this tool for neuroblastoma, but the approach might also be adapted to other types of cancer in which DNA changes are important," said co-author Paolo Fortina, M.D., Ph.D., professor of medicine at Jefferson Medical College of Thomas Jefferson University in Philadelphia and section chief, Genomics and Diagnostics, in the Jefferson Department of Medicine’s Center for Translational Medicine.

The most common cancer found in infants, neuroblastoma strikes the peripheral nervous system, often appearing as a solid tumor in a child’s chest or abdomen. Some types of neuroblastoma are low risk, resolving after surgeons remove the tumor, while others are much more aggressive. Identifying the correct risk level allows doctors to treat aggressive cancers appropriately, while not subjecting children with low-risk cancer to overtreatment.

Cancer researchers have pinpointed specific genetic abnormalities that influence the aggressiveness of neuroblastoma. An important abnormality is loss of heterozygosity (LOH), the deletion of one copy of a pair of genes. When the gene involved is a tumor suppressor gene, LOH removes a brake on uncontrolled cell growth, the growth that is the hallmark of cancer.

Researchers in Dr. Maris’ laboratory previously established that LOH in a region of chromosome 11 allows aggressive neuroblastoma to take hold. The new microarray can detect such gene defects on chromosome 11 and other genetic regions implicated in neuroblastoma.

Microarrays are silicon chips that contain tightly ordered selections of genetic material upon which sample material can be tested. When DNA bases from a sample bind to complementary sequences on the microarray, they cause fluorescent tags to shine under laser light. This is a signal that a particular gene variation is present in the sample.

"We can test DNA from peripheral blood and from the tumor, and we should see a loss of signal in the cancer," said Dr. Fortina. He noted that the researchers can simultaneously evaluate seven chromosomal regions known to be involved in neuroblastoma.

Unlike gene expression microarrays, which detect varying levels of RNA to measure the activity levels of different genes as DNA transfers information to RNA, the current microarray directly identifies changes in DNA. "These DNA changes, involving gain or loss of genetic material, are important for neuroblastoma prognosis," said Dr. Maris.

In pinpointing specific regions of chromosomes with loss in DNA, the technology may help confirm a clinical diagnosis, said Saul Surrey, Ph.D., professor of medicine and Associate Director of Research at the Cardeza Foundation for Hematologic Research and the Division of Hematology at Jefferson Medical College. If a clinical diagnosis isn’t known, the method might provide some clues.

The microarrray described in the paper has only been used in their laboratory study, but the researchers hope that with further study it may become more widely available as a diagnostic tool for oncologists treating patients with neuroblastoma, and possibly for other cancers.

In addition to Drs. Maris, Fortina, and Surrey, other co-authors are George Hii, Peter S. White, Ph.D., and Eric Rappaport, Ph.D., of The Children’s Hospital of Philadelphia; and Craig A. Gelfand, Ph.D., and Shobha Varde, M.S., of Orchid Biosciences, Princeton, N.J. Grants from the National Institutes of Health and the Children’s Oncology Group supported the work.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>