Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Butterflies Fly Thousands Of Miles Without Getting Lost Revealed By Researchers

02.08.2005


While “navigation” systems in automobiles are a fairly new (and still costly) innovation, monarch butterflies have managed for millennia to navigate their way for a distance of some 3000 miles (4800 kilometers) each fall from Canada to Mexico (and vice-versa in the spring) without losing their way.


A typical monarch butterfly. photo courtesy of Scott Camazine (www.scottcamazine.com)



The phenomenon of long-range bird migration is a well-known one, but not in the insect world. Also, among birds their migration route is a round-trip one, which they make more than once in their lifetimes, while for the monarch it is strictly a one-way trip for each butterfly. How do these creatures do it?

The mystery of the mechanisms involved in this remarkable phenomenon has been resolved by a team of scientists who did this by exploring the infinitesimal butterfly brain and eye tissues to uncover new insights into the biological machinery that directs this delicate creature on its lengthy flight path.


The research team, led by Prof. Steven Reppert of the University of Massachusetts Medical School, included Dr. Oren Froy, now of the Faculty of Agricultural, Food and Environmental Quality Sciences of the Hebrew University of Jerusalem. Others involved were from the Czech Academy of Sciences and the University of California, Irvine. Their latest findings were published in a recent issue of Neuron magazine, constituting a continuation of their earlier work, published in the journal Science.

While light in general is essential to the functioning of the “biological clock” in the butterfly brain – governing its metabolic cycles, including its “signal” to migrate -- the researchers discovered that it is specifically the ultraviolet band of light that is crucial to the creature’s orientation. The butterflies have special photoreceptors for ultraviolet (UV) light in their eyes which provide them with their sense of direction.

They proved that this ultraviolet “navigation” is crucial by placing butterflies in a “flight” simulator. When a UV light filter was used in the simulator, the butterflies lost their orientation

Further probing revealed a key wiring connection between the light-detecting navigation sensors in the butterfly’s eye and its brain clock Thus, it was shown that input from two interconnected systems – UV light detection in the eye and the biological clock in the brain -- together guide the butterflies “straight and true” to their destination at the appointed times in their two-month migration over thousands of miles/kilometers.

Jerry Barach | alfa
Further information:
http://media.huji.ac.il

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>