Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene silencing technique offers new strategy for treating, curing disease

01.08.2005


A new technique aimed at directly controlling the expression of genes by turning them on or off at the DNA level could lead to drugs for the treatment or cure of many diseases, say researchers at UT Southwestern Medical Center.



"Virtually every disease starts at the level of malfunctioning gene expression, or viral or bacterial gene expression," said Dr. David Corey, professor of pharmacology and biochemistry. "This is an approach that could theoretically produce a drug for the treatment or cure of almost any disease."

In two papers appearing in the online edition of the journal Nature Chemical Biology, Dr. Corey and his colleagues describe how they efficiently shut down gene expression in cultured cells by blocking the ability of chromosomal DNA to be copied into RNA and made into proteins. The studies, which Dr. Corey said represent the most significant findings thus far in his career, are the most definitive to date showing that chromosomal DNA is accessible to and can be controlled by synthetic and natural molecules.


"With this information, one could easily turn on or off gene expression, as well as think about ways to correct genetic disease by changing mutant gene sequences back to normal," Dr. Corey said. "Those types of things now look a lot more feasible."

Genes are segments of DNA housed in the chromosomes in the nucleus of every cell. Genes carry instructions for making proteins, which in turn carry out all of life’s functions. Faulty or mutated genes lead to malfunctioning proteins, which cause disease.

The information in a gene is not directly converted into proteins, but first is copied by special enzymes into many copies of messenger RNA, which then move out of the nucleus and into the body of the cell, where they go on to create a protein.

Current techniques for turning genes on or off focus on controlling the messenger RNA once it’s already produced. But blocking all the copies of messenger RNA before they can make a protein within a cell is akin to using a bucket to catch all the streams of water coming out of a yard sprinkler before they can hit the ground.

While that’s certainly possible, a more efficient way to staunch the streams of water would be to turn off the faucet. By targeting the chromosomal DNA directly, that’s just what Dr. Corey and his colleagues accomplished.

The researchers targeted chromosomal DNA in two ways. First, they developed a synthetic molecule called a peptide nucleic acid, or PNA, which physically binds to DNA and blocks enzymes from copying, or transcribing, the DNA into messenger RNA.

More importantly, the researchers also employed RNA itself as a silencing agent. Previous work by other scientists had shown that RNA might be able to target chromosomal DNA, so once Dr. Corey and his team saw that PNAs were working, they decided to try RNA as well.

"The RNA is more important because it may reflect the body’s own natural mechanism for controlling gene expression, while the PNAs are synthetic," Dr. Corey said.

"The experiments worked beautifully," he said. "It’s hard to believe that this strategy would work so well if nature wasn’t doing it already."

The researchers designed their RNA to match up with and target specific genes. "It’s possible that the body is making the RNAs that we are using, and that will be an exciting topic for further research, to determine whether the human body or viruses and bacteria make RNA sequences like this to control gene expression," Dr. Corey said.

So far, the researchers have inhibited the expression of nine different genes in cancer cell cultures. Dr. Corey said it’s not clear whether the RNA is actually binding to the DNA itself, as the PNAs do, but it’s clear the effects are occurring at the DNA level.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>