Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene silencing technique offers new strategy for treating, curing disease


A new technique aimed at directly controlling the expression of genes by turning them on or off at the DNA level could lead to drugs for the treatment or cure of many diseases, say researchers at UT Southwestern Medical Center.

"Virtually every disease starts at the level of malfunctioning gene expression, or viral or bacterial gene expression," said Dr. David Corey, professor of pharmacology and biochemistry. "This is an approach that could theoretically produce a drug for the treatment or cure of almost any disease."

In two papers appearing in the online edition of the journal Nature Chemical Biology, Dr. Corey and his colleagues describe how they efficiently shut down gene expression in cultured cells by blocking the ability of chromosomal DNA to be copied into RNA and made into proteins. The studies, which Dr. Corey said represent the most significant findings thus far in his career, are the most definitive to date showing that chromosomal DNA is accessible to and can be controlled by synthetic and natural molecules.

"With this information, one could easily turn on or off gene expression, as well as think about ways to correct genetic disease by changing mutant gene sequences back to normal," Dr. Corey said. "Those types of things now look a lot more feasible."

Genes are segments of DNA housed in the chromosomes in the nucleus of every cell. Genes carry instructions for making proteins, which in turn carry out all of life’s functions. Faulty or mutated genes lead to malfunctioning proteins, which cause disease.

The information in a gene is not directly converted into proteins, but first is copied by special enzymes into many copies of messenger RNA, which then move out of the nucleus and into the body of the cell, where they go on to create a protein.

Current techniques for turning genes on or off focus on controlling the messenger RNA once it’s already produced. But blocking all the copies of messenger RNA before they can make a protein within a cell is akin to using a bucket to catch all the streams of water coming out of a yard sprinkler before they can hit the ground.

While that’s certainly possible, a more efficient way to staunch the streams of water would be to turn off the faucet. By targeting the chromosomal DNA directly, that’s just what Dr. Corey and his colleagues accomplished.

The researchers targeted chromosomal DNA in two ways. First, they developed a synthetic molecule called a peptide nucleic acid, or PNA, which physically binds to DNA and blocks enzymes from copying, or transcribing, the DNA into messenger RNA.

More importantly, the researchers also employed RNA itself as a silencing agent. Previous work by other scientists had shown that RNA might be able to target chromosomal DNA, so once Dr. Corey and his team saw that PNAs were working, they decided to try RNA as well.

"The RNA is more important because it may reflect the body’s own natural mechanism for controlling gene expression, while the PNAs are synthetic," Dr. Corey said.

"The experiments worked beautifully," he said. "It’s hard to believe that this strategy would work so well if nature wasn’t doing it already."

The researchers designed their RNA to match up with and target specific genes. "It’s possible that the body is making the RNAs that we are using, and that will be an exciting topic for further research, to determine whether the human body or viruses and bacteria make RNA sequences like this to control gene expression," Dr. Corey said.

So far, the researchers have inhibited the expression of nine different genes in cancer cell cultures. Dr. Corey said it’s not clear whether the RNA is actually binding to the DNA itself, as the PNAs do, but it’s clear the effects are occurring at the DNA level.

Aline McKenzie | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>