Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene silencing technique offers new strategy for treating, curing disease

01.08.2005


A new technique aimed at directly controlling the expression of genes by turning them on or off at the DNA level could lead to drugs for the treatment or cure of many diseases, say researchers at UT Southwestern Medical Center.



"Virtually every disease starts at the level of malfunctioning gene expression, or viral or bacterial gene expression," said Dr. David Corey, professor of pharmacology and biochemistry. "This is an approach that could theoretically produce a drug for the treatment or cure of almost any disease."

In two papers appearing in the online edition of the journal Nature Chemical Biology, Dr. Corey and his colleagues describe how they efficiently shut down gene expression in cultured cells by blocking the ability of chromosomal DNA to be copied into RNA and made into proteins. The studies, which Dr. Corey said represent the most significant findings thus far in his career, are the most definitive to date showing that chromosomal DNA is accessible to and can be controlled by synthetic and natural molecules.


"With this information, one could easily turn on or off gene expression, as well as think about ways to correct genetic disease by changing mutant gene sequences back to normal," Dr. Corey said. "Those types of things now look a lot more feasible."

Genes are segments of DNA housed in the chromosomes in the nucleus of every cell. Genes carry instructions for making proteins, which in turn carry out all of life’s functions. Faulty or mutated genes lead to malfunctioning proteins, which cause disease.

The information in a gene is not directly converted into proteins, but first is copied by special enzymes into many copies of messenger RNA, which then move out of the nucleus and into the body of the cell, where they go on to create a protein.

Current techniques for turning genes on or off focus on controlling the messenger RNA once it’s already produced. But blocking all the copies of messenger RNA before they can make a protein within a cell is akin to using a bucket to catch all the streams of water coming out of a yard sprinkler before they can hit the ground.

While that’s certainly possible, a more efficient way to staunch the streams of water would be to turn off the faucet. By targeting the chromosomal DNA directly, that’s just what Dr. Corey and his colleagues accomplished.

The researchers targeted chromosomal DNA in two ways. First, they developed a synthetic molecule called a peptide nucleic acid, or PNA, which physically binds to DNA and blocks enzymes from copying, or transcribing, the DNA into messenger RNA.

More importantly, the researchers also employed RNA itself as a silencing agent. Previous work by other scientists had shown that RNA might be able to target chromosomal DNA, so once Dr. Corey and his team saw that PNAs were working, they decided to try RNA as well.

"The RNA is more important because it may reflect the body’s own natural mechanism for controlling gene expression, while the PNAs are synthetic," Dr. Corey said.

"The experiments worked beautifully," he said. "It’s hard to believe that this strategy would work so well if nature wasn’t doing it already."

The researchers designed their RNA to match up with and target specific genes. "It’s possible that the body is making the RNAs that we are using, and that will be an exciting topic for further research, to determine whether the human body or viruses and bacteria make RNA sequences like this to control gene expression," Dr. Corey said.

So far, the researchers have inhibited the expression of nine different genes in cancer cell cultures. Dr. Corey said it’s not clear whether the RNA is actually binding to the DNA itself, as the PNAs do, but it’s clear the effects are occurring at the DNA level.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>