Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene silencing technique offers new strategy for treating, curing disease

01.08.2005


A new technique aimed at directly controlling the expression of genes by turning them on or off at the DNA level could lead to drugs for the treatment or cure of many diseases, say researchers at UT Southwestern Medical Center.



"Virtually every disease starts at the level of malfunctioning gene expression, or viral or bacterial gene expression," said Dr. David Corey, professor of pharmacology and biochemistry. "This is an approach that could theoretically produce a drug for the treatment or cure of almost any disease."

In two papers appearing in the online edition of the journal Nature Chemical Biology, Dr. Corey and his colleagues describe how they efficiently shut down gene expression in cultured cells by blocking the ability of chromosomal DNA to be copied into RNA and made into proteins. The studies, which Dr. Corey said represent the most significant findings thus far in his career, are the most definitive to date showing that chromosomal DNA is accessible to and can be controlled by synthetic and natural molecules.


"With this information, one could easily turn on or off gene expression, as well as think about ways to correct genetic disease by changing mutant gene sequences back to normal," Dr. Corey said. "Those types of things now look a lot more feasible."

Genes are segments of DNA housed in the chromosomes in the nucleus of every cell. Genes carry instructions for making proteins, which in turn carry out all of life’s functions. Faulty or mutated genes lead to malfunctioning proteins, which cause disease.

The information in a gene is not directly converted into proteins, but first is copied by special enzymes into many copies of messenger RNA, which then move out of the nucleus and into the body of the cell, where they go on to create a protein.

Current techniques for turning genes on or off focus on controlling the messenger RNA once it’s already produced. But blocking all the copies of messenger RNA before they can make a protein within a cell is akin to using a bucket to catch all the streams of water coming out of a yard sprinkler before they can hit the ground.

While that’s certainly possible, a more efficient way to staunch the streams of water would be to turn off the faucet. By targeting the chromosomal DNA directly, that’s just what Dr. Corey and his colleagues accomplished.

The researchers targeted chromosomal DNA in two ways. First, they developed a synthetic molecule called a peptide nucleic acid, or PNA, which physically binds to DNA and blocks enzymes from copying, or transcribing, the DNA into messenger RNA.

More importantly, the researchers also employed RNA itself as a silencing agent. Previous work by other scientists had shown that RNA might be able to target chromosomal DNA, so once Dr. Corey and his team saw that PNAs were working, they decided to try RNA as well.

"The RNA is more important because it may reflect the body’s own natural mechanism for controlling gene expression, while the PNAs are synthetic," Dr. Corey said.

"The experiments worked beautifully," he said. "It’s hard to believe that this strategy would work so well if nature wasn’t doing it already."

The researchers designed their RNA to match up with and target specific genes. "It’s possible that the body is making the RNAs that we are using, and that will be an exciting topic for further research, to determine whether the human body or viruses and bacteria make RNA sequences like this to control gene expression," Dr. Corey said.

So far, the researchers have inhibited the expression of nine different genes in cancer cell cultures. Dr. Corey said it’s not clear whether the RNA is actually binding to the DNA itself, as the PNAs do, but it’s clear the effects are occurring at the DNA level.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>