Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single molecule is in driver’s seat of molecular machine

01.08.2005


While the human body has plenty of specialized molecular motors and machines powering the mechanical work necessary for cells to function properly, scientists themselves face many hurdles as they try to create their own molecular machines in the laboratory.



The downsides of conventional molecular machines are that they are driven as an ensemble, by external light or chemistry, for example, and they are big -- made up of many molecules. These factors make these machines difficult to control.

In a theoretical paper published in the journal Physical Review Letters, two Northwestern University chemists have shown how molecular machines can be driven individually (relying on only one molecule) by applying an electric current that creates an internal energy source.


"People envision using molecular machines for computing techniques, sensors, bioengineering and solar cells, for example," said Tamar Seideman, professor of chemistry, who led the research team. "Molecular machines have unique functions and properties that are different from macroscopic machines, not only and not primarily because they are of the nanoscale. Rather, they use truly molecular features such as their energy level structure, their dynamics and their response to external stimuli.

"The many beautiful examples already in the literature include analogues of mechanical devices that operate on the molecular scale, such as shuttles, brakes, ratches, turnstiles and rotors. For some applications, such as drug delivery, it doesn’t matter that the molecules are randomly oriented, but the majority of applications require the molecular machines to be driven individually in a coherent and controllable manner."

In their proposed molecular machine, Seideman and Chao-Cheng Kaun, a post-doctoral fellow in Seideman’s lab, place a small carbon molecule (C60), known as a fullerene or "buckyball," in between two gold electrodes. (This is called a molecular junction.) When an electric current is run through the electrodes, the electrons transfer energy to the molecule, causing the molecule to vibrate and creating an internal energy source.

Essentially, the buckyball oscillates between the electrodes, as if on an invisible spring. Because the conductivity of this tiny junction depends strongly on the location of the buckyball between the electrodes, the current oscillates with time at the frequency of the C60 oscillations. The spontaneous oscillating current translates into an oscillating electromagnetic field, so the fullerene junction becomes a nanoscale generator of a radiation field -- something not demonstrated before.

Because the single molecule can be driven individually the resulting motion can be controlled, giving an advantage to such a molecular machine.

"The results are very exciting," said Seideman. "Since we understand the processes that produce the movement we can control the dynamics and hence hope to make use of this tiny molecular motor. We are encouraged by the rapid progress of experimental methods of making little molecular junctions of this type."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>