Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Reveal Secret of Key Protein in Brain and Heart Function

01.08.2005


Synapse-associated protein 97. The model shows the PDZ domain of the SAP97 protein in a ribbon format, highlighting its structural elements. The intra-cellular portion of the NMDA receptor is shown as ball-and-stick format atoms. SAP97 is a scaffolding protein, facilitating nerve signals.


Brown University biologists have solved the structure of a critical piece of synapse-associated protein 97 (SAP97) found in abundance in the heart and head, where it is believed to play a role in everything from cardiac contractions to memory creation. Results are published in The Journal of Biological Chemistry.

Dale Mierke, associate professor of medical science at Brown, said that knowing how a piece of SAP97 is built is an important step. Now that part of the protein’s structure is solved, scientists can create a molecule to disable it. That, in turn, will allow them to fully understand SAP97’s role in the body. And that will point drug makers to targets for developing new ways to treat cardiac or neurological diseases.

"To arrive at a solution, you need to understand the problem,” Mierke said. “Solving protein structures opens doors for effective treatments.”



SAP97 is found mainly in the central nervous system and is known as a “scaffolding” protein. In this role, it serves as a sort of tether, grabbing proteins inside the cell critical to nerve signaling and keeping them close to N-methyl-D-asparate (NMDA) receptors at the cell surface. NMDA receptors help usher in a neurotransmitter called glutamate that is essential for learning and memory and also plays a role in drug addiction. A similar scaffolding mechanism is at work in the heart, where it affects basic functions, including the heartbeat.

SAP97 is a complex protein made up of five “domains” similar to a train comprised of an engine and four boxcars. In their experiments, Mierke, graduate student Lei Wang and postdoctoral research fellow Andrea Piserchio – all colleagues in the Department of Molecular Pharmacology, Physiology and Biotechnology – focused on the engine. This domain, known as PDZ1, is where the protein links to NMDA receptors. The team used high-resolution nuclear magnetic resonance spectroscopy to solve the structure of PDZ1, as well as a small portion of the receptor to which it binds.

Mierke said the group is now developing a molecule that can inhibit PDZ1 as well as PDZ2, the first boxcar on the multi-domain protein.

The National Institutes of Health funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>