Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depression linked to previously unknown dopamine regulator

29.07.2005


Finding advances hope for potential new target for antidepressants



Researchers from Harvard Medical School have found a molecule that is unexpectedly involved in dopamine signaling, and in a manner that supports the potential of dopamine as an alternative target for treating depression. The results provide evidence that there is a molecular link between impaired dopamine signaling and depression, which affects 16 percent of the adult population in the United States. The research appears in the July 29 issue of Cell.

Li-Huei Tsai, Harvard Medical School (HMS) professor of pathology, HMS research fellow Sang Ki Park, and colleagues worked with mice and found a novel function for the molecule Par-4 (prostate apoptosis response 4)--as a binding partner for dopamine receptor D2. When mice deficient in Par-4 were subjected to stress, they showed depression-like behaviors, proposing Par-4–as a molecular link between dopamine signaling and depression. Par-4 was previously implicated as a proapoptotic factor in neurodegenerative diseases such as Alzheimer’s disease. These new findings reveal an unexpected role for Par-4 in the dopamine system and present a rare glimpse of molecular mechanisms behind clinical depression.


"Current antidepression therapies are mostly based on the deficiency or imbalance of the serotonin and noradrenaline systems. Our study highlights the importance of the dopamine system, a less appreciated target in the current antidepression therapies," said Tsai, also a Howard Hughes Medical Institute investigator.

Although the cause of depression is multifaceted, a hypothesis based on deficiency or imbalance of serotonin and/or noradrenaline as the root of depression has been a central topic of research. Drugs that currently treat depression (SSRIs and MAOIs, which acutely modify levels of serotonin or noradrenaline at the synapse) have significant delays before becoming effective, and a large percentage of people are resistant to the current therapies, leaving room for improvement of therapeutic strategies.

The brain’s mood, reward, and motivation circuits are mainly governed by dopamine and have been regarded as potential alternative targets for treating depression. Many of these functions are integrated by the medium spiny neurons of the striatum, which lie below the cortex of the brain and respond to dopamine. Dopamine exerts its function in target cells through five known subtypes of dopamine receptors to regulate motor control, stereotypic behaviors, arousal, mood, motivation, and endocrine function. Impairment in the function of dopamine D2 receptor is implicated in various neuropsychiatric disorders including schizophrenia and drug addiction.

Understanding the details of the modulatory events in D2 dopamine receptor–mediated intracellular signaling may provide novel therapeutic targets for treating various associated disorders.

Leah Gourley | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>