Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depression linked to previously unknown dopamine regulator

29.07.2005


Finding advances hope for potential new target for antidepressants



Researchers from Harvard Medical School have found a molecule that is unexpectedly involved in dopamine signaling, and in a manner that supports the potential of dopamine as an alternative target for treating depression. The results provide evidence that there is a molecular link between impaired dopamine signaling and depression, which affects 16 percent of the adult population in the United States. The research appears in the July 29 issue of Cell.

Li-Huei Tsai, Harvard Medical School (HMS) professor of pathology, HMS research fellow Sang Ki Park, and colleagues worked with mice and found a novel function for the molecule Par-4 (prostate apoptosis response 4)--as a binding partner for dopamine receptor D2. When mice deficient in Par-4 were subjected to stress, they showed depression-like behaviors, proposing Par-4–as a molecular link between dopamine signaling and depression. Par-4 was previously implicated as a proapoptotic factor in neurodegenerative diseases such as Alzheimer’s disease. These new findings reveal an unexpected role for Par-4 in the dopamine system and present a rare glimpse of molecular mechanisms behind clinical depression.


"Current antidepression therapies are mostly based on the deficiency or imbalance of the serotonin and noradrenaline systems. Our study highlights the importance of the dopamine system, a less appreciated target in the current antidepression therapies," said Tsai, also a Howard Hughes Medical Institute investigator.

Although the cause of depression is multifaceted, a hypothesis based on deficiency or imbalance of serotonin and/or noradrenaline as the root of depression has been a central topic of research. Drugs that currently treat depression (SSRIs and MAOIs, which acutely modify levels of serotonin or noradrenaline at the synapse) have significant delays before becoming effective, and a large percentage of people are resistant to the current therapies, leaving room for improvement of therapeutic strategies.

The brain’s mood, reward, and motivation circuits are mainly governed by dopamine and have been regarded as potential alternative targets for treating depression. Many of these functions are integrated by the medium spiny neurons of the striatum, which lie below the cortex of the brain and respond to dopamine. Dopamine exerts its function in target cells through five known subtypes of dopamine receptors to regulate motor control, stereotypic behaviors, arousal, mood, motivation, and endocrine function. Impairment in the function of dopamine D2 receptor is implicated in various neuropsychiatric disorders including schizophrenia and drug addiction.

Understanding the details of the modulatory events in D2 dopamine receptor–mediated intracellular signaling may provide novel therapeutic targets for treating various associated disorders.

Leah Gourley | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>