Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depression linked to previously unknown dopamine regulator

29.07.2005


Finding advances hope for potential new target for antidepressants



Researchers from Harvard Medical School have found a molecule that is unexpectedly involved in dopamine signaling, and in a manner that supports the potential of dopamine as an alternative target for treating depression. The results provide evidence that there is a molecular link between impaired dopamine signaling and depression, which affects 16 percent of the adult population in the United States. The research appears in the July 29 issue of Cell.

Li-Huei Tsai, Harvard Medical School (HMS) professor of pathology, HMS research fellow Sang Ki Park, and colleagues worked with mice and found a novel function for the molecule Par-4 (prostate apoptosis response 4)--as a binding partner for dopamine receptor D2. When mice deficient in Par-4 were subjected to stress, they showed depression-like behaviors, proposing Par-4–as a molecular link between dopamine signaling and depression. Par-4 was previously implicated as a proapoptotic factor in neurodegenerative diseases such as Alzheimer’s disease. These new findings reveal an unexpected role for Par-4 in the dopamine system and present a rare glimpse of molecular mechanisms behind clinical depression.


"Current antidepression therapies are mostly based on the deficiency or imbalance of the serotonin and noradrenaline systems. Our study highlights the importance of the dopamine system, a less appreciated target in the current antidepression therapies," said Tsai, also a Howard Hughes Medical Institute investigator.

Although the cause of depression is multifaceted, a hypothesis based on deficiency or imbalance of serotonin and/or noradrenaline as the root of depression has been a central topic of research. Drugs that currently treat depression (SSRIs and MAOIs, which acutely modify levels of serotonin or noradrenaline at the synapse) have significant delays before becoming effective, and a large percentage of people are resistant to the current therapies, leaving room for improvement of therapeutic strategies.

The brain’s mood, reward, and motivation circuits are mainly governed by dopamine and have been regarded as potential alternative targets for treating depression. Many of these functions are integrated by the medium spiny neurons of the striatum, which lie below the cortex of the brain and respond to dopamine. Dopamine exerts its function in target cells through five known subtypes of dopamine receptors to regulate motor control, stereotypic behaviors, arousal, mood, motivation, and endocrine function. Impairment in the function of dopamine D2 receptor is implicated in various neuropsychiatric disorders including schizophrenia and drug addiction.

Understanding the details of the modulatory events in D2 dopamine receptor–mediated intracellular signaling may provide novel therapeutic targets for treating various associated disorders.

Leah Gourley | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>