Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical step traced in anthrax infection

29.07.2005


Pore protein plays active role in toxins’ entry into cells



Scientists at Harvard Medical School (HMS) have revealed details of a key step in the entry of anthrax toxin into human cells. The work, which grew out of an ongoing effort to produce a better anthrax therapeutic, shows that the protective antigen component of the bacterial toxin plays an active role in transferring the other two components of the toxin through the cell membrane. The research, led by R. John Collier, professor of microbiology and molecular genetics at HMS, provides insight into the broader question of how proteins cross cell membranes. The findings appear in the July 29 issue of Science.

An anthrax bacterium secretes three nontoxic proteins that assemble into a toxic complex on the surface of the host cell to set off a chain of events leading to cell toxicity and death. Protective antigen (PA) is one of these proteins, and after binding to the cell, seven copies of it assemble into a specific complex that is capable of forming a pore in a cellular membrane. The pore permits the other two proteins, lethal factor (LF) and edema factor (EF), to enter the cell interior, where the factors interfere with metabolic processes, leading to death of the infected individual.


Details surrounding this process are continuing to be uncovered in Collier’s lab. "Until now, we have not known whether the PA pore serves simply as a passive conduit, or alternatively, plays an active role in shepherding the unfolded LF and EF molecules through," he said. The findings show that it is the latter?the pore takes an active role in protein translocation.

The scientists demonstrated this role by investigating the channel’s chemical make-up. Using a procedure known as cysteine-scanning mutagenesis, they identified the hydrophobic, or "greasy," amino acid phenylalanine in protective antigen’s pore-forming domain. Seven of these amino acids project into the lumen of the pore and form a collection of greasy residues, nicknamed "the phi-clamp" by the scientists. Because the water-filled lumen of the membrane pore is smaller than the folded lethal factor and edema factor, these proteins must first unfold before being actively translocated through the heptameric channel. The clamp appears to work as a chaperone, interacting with the hydrophobic sequences on the two factors as they unfold during translocation. The researchers demonstrated that the phi-clamp was critical to infection by mutating the region and thereby blocking translocation of the toxin proteins.

These recent experimental results extend and explain a 1999 discovery by the Collier lab identifying a set of mutations in protective antigen that prevent translocation, some of which represented a new type of antitoxin that may be useful in anthrax treatment.

In the recent work, Collier and his colleagues found that the phi-clamp composes the main conductance-blocking site for hydrophobic drugs, and it is one of their targets for further investigation. "I believe discovery of the phi-clamp will prove to be one of the high points along the path to understanding how translocation occurs in this system," Collier said.

One of the greatest strengths of the experiment, according to Collier, was the integrative use of technologies applied to the testing procedures. Both cellular systems and model electrophysiological membrane systems were used to test the potency of the anthrax toxin. "We tried to bridge reductionist science with the in vivo situation ?we have to do both to make correlations," he said.

The researchers, who were funded by the National Institutes of Health and the National Science Foundation, will continue to study protein unfolding in translocation during anthrax infection, which may prove to be relevant in other biological systems. "This is only a partial picture," Collier said. "There are still major outstanding questions about the overall process that need to be addressed."

Leah Gourley | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>