Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein controls metabolism: U of T research

29.07.2005


Heme is key to protein’s work



University of Toronto researchers have gained new insight into how a specific protein may control circadian rhythms and metabolic processes, which has implications for treating cholesterol-related diseases.

U of T professor Henry Krause and his colleagues have identified heme, an iron compound, best known for its oxygen carrying capabilities in hemoglobin, as the molecule that allows the protein E75 to regulate a number of key developmental processes. In a paper published in the July 29 issue of Cell, the researchers use fruit flies to show that heme attaches itself to E75, allowing the protein to respond to a variety of cellular signals necessary for controlling systemic processes such as metabolism and circadian rhythms, the human body’s clock.


Since the human body contains a nuclear hormone receptor comparable to E75, the research is an important first step to understanding how people metabolize fat, how their circadian rhythms are regulated and how their bodies age. The researchers studied fruit flies, because they have many genes similar to those found in humans and they reproduce rapidly.

"The important role heme plays in the body’s smooth operation has been previously identified, but it was quite unexpected to find it binding to a member of the nuclear hormone receptor family of proteins," says Krause, a professor in the Banting and Best Department of Medical Research and the Department of Medical Genetics and Microbiology."

There are practical reasons for exploring the relationship between heme and E75, says Krause, whose lab purified the protein, then used mass spectrometry to analyze it. About 15 per cent of successful drugs on the market target nuclear hormone receptors like E75.

"In addition to finding out how E75 and its human counterpart control metabolic processes, and learning how to control these functions, it should also help us to discover the other hormones that control the rest of this nuclear hormone receptor family," says Krause. As they are identified, new drugs can be designed to control the many metabolic diseases, such as high cholesterol, associated with the malfunction of these proteins.

Other researchers involved in this study include U of T professor Aled Edwards, head of the Structural Genomics Consortium; U of T post-doctoral student Jeff Reinking, master’s degree holder Mandy Lam, doctoral students Keith Pardee and Heidi Sampson and post-doctoral fellow Ping Yang; researchers Shawn Williams and Wendy White from GlaxoSmithKline; and technician Suya Liu and Professor Gilles Lajoie from the University of Western Ontario.

Henry Krause | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>