Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein controls metabolism: U of T research

29.07.2005


Heme is key to protein’s work



University of Toronto researchers have gained new insight into how a specific protein may control circadian rhythms and metabolic processes, which has implications for treating cholesterol-related diseases.

U of T professor Henry Krause and his colleagues have identified heme, an iron compound, best known for its oxygen carrying capabilities in hemoglobin, as the molecule that allows the protein E75 to regulate a number of key developmental processes. In a paper published in the July 29 issue of Cell, the researchers use fruit flies to show that heme attaches itself to E75, allowing the protein to respond to a variety of cellular signals necessary for controlling systemic processes such as metabolism and circadian rhythms, the human body’s clock.


Since the human body contains a nuclear hormone receptor comparable to E75, the research is an important first step to understanding how people metabolize fat, how their circadian rhythms are regulated and how their bodies age. The researchers studied fruit flies, because they have many genes similar to those found in humans and they reproduce rapidly.

"The important role heme plays in the body’s smooth operation has been previously identified, but it was quite unexpected to find it binding to a member of the nuclear hormone receptor family of proteins," says Krause, a professor in the Banting and Best Department of Medical Research and the Department of Medical Genetics and Microbiology."

There are practical reasons for exploring the relationship between heme and E75, says Krause, whose lab purified the protein, then used mass spectrometry to analyze it. About 15 per cent of successful drugs on the market target nuclear hormone receptors like E75.

"In addition to finding out how E75 and its human counterpart control metabolic processes, and learning how to control these functions, it should also help us to discover the other hormones that control the rest of this nuclear hormone receptor family," says Krause. As they are identified, new drugs can be designed to control the many metabolic diseases, such as high cholesterol, associated with the malfunction of these proteins.

Other researchers involved in this study include U of T professor Aled Edwards, head of the Structural Genomics Consortium; U of T post-doctoral student Jeff Reinking, master’s degree holder Mandy Lam, doctoral students Keith Pardee and Heidi Sampson and post-doctoral fellow Ping Yang; researchers Shawn Williams and Wendy White from GlaxoSmithKline; and technician Suya Liu and Professor Gilles Lajoie from the University of Western Ontario.

Henry Krause | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>