Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein controls metabolism: U of T research

29.07.2005


Heme is key to protein’s work



University of Toronto researchers have gained new insight into how a specific protein may control circadian rhythms and metabolic processes, which has implications for treating cholesterol-related diseases.

U of T professor Henry Krause and his colleagues have identified heme, an iron compound, best known for its oxygen carrying capabilities in hemoglobin, as the molecule that allows the protein E75 to regulate a number of key developmental processes. In a paper published in the July 29 issue of Cell, the researchers use fruit flies to show that heme attaches itself to E75, allowing the protein to respond to a variety of cellular signals necessary for controlling systemic processes such as metabolism and circadian rhythms, the human body’s clock.


Since the human body contains a nuclear hormone receptor comparable to E75, the research is an important first step to understanding how people metabolize fat, how their circadian rhythms are regulated and how their bodies age. The researchers studied fruit flies, because they have many genes similar to those found in humans and they reproduce rapidly.

"The important role heme plays in the body’s smooth operation has been previously identified, but it was quite unexpected to find it binding to a member of the nuclear hormone receptor family of proteins," says Krause, a professor in the Banting and Best Department of Medical Research and the Department of Medical Genetics and Microbiology."

There are practical reasons for exploring the relationship between heme and E75, says Krause, whose lab purified the protein, then used mass spectrometry to analyze it. About 15 per cent of successful drugs on the market target nuclear hormone receptors like E75.

"In addition to finding out how E75 and its human counterpart control metabolic processes, and learning how to control these functions, it should also help us to discover the other hormones that control the rest of this nuclear hormone receptor family," says Krause. As they are identified, new drugs can be designed to control the many metabolic diseases, such as high cholesterol, associated with the malfunction of these proteins.

Other researchers involved in this study include U of T professor Aled Edwards, head of the Structural Genomics Consortium; U of T post-doctoral student Jeff Reinking, master’s degree holder Mandy Lam, doctoral students Keith Pardee and Heidi Sampson and post-doctoral fellow Ping Yang; researchers Shawn Williams and Wendy White from GlaxoSmithKline; and technician Suya Liu and Professor Gilles Lajoie from the University of Western Ontario.

Henry Krause | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>