Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein controls metabolism: U of T research

29.07.2005


Heme is key to protein’s work



University of Toronto researchers have gained new insight into how a specific protein may control circadian rhythms and metabolic processes, which has implications for treating cholesterol-related diseases.

U of T professor Henry Krause and his colleagues have identified heme, an iron compound, best known for its oxygen carrying capabilities in hemoglobin, as the molecule that allows the protein E75 to regulate a number of key developmental processes. In a paper published in the July 29 issue of Cell, the researchers use fruit flies to show that heme attaches itself to E75, allowing the protein to respond to a variety of cellular signals necessary for controlling systemic processes such as metabolism and circadian rhythms, the human body’s clock.


Since the human body contains a nuclear hormone receptor comparable to E75, the research is an important first step to understanding how people metabolize fat, how their circadian rhythms are regulated and how their bodies age. The researchers studied fruit flies, because they have many genes similar to those found in humans and they reproduce rapidly.

"The important role heme plays in the body’s smooth operation has been previously identified, but it was quite unexpected to find it binding to a member of the nuclear hormone receptor family of proteins," says Krause, a professor in the Banting and Best Department of Medical Research and the Department of Medical Genetics and Microbiology."

There are practical reasons for exploring the relationship between heme and E75, says Krause, whose lab purified the protein, then used mass spectrometry to analyze it. About 15 per cent of successful drugs on the market target nuclear hormone receptors like E75.

"In addition to finding out how E75 and its human counterpart control metabolic processes, and learning how to control these functions, it should also help us to discover the other hormones that control the rest of this nuclear hormone receptor family," says Krause. As they are identified, new drugs can be designed to control the many metabolic diseases, such as high cholesterol, associated with the malfunction of these proteins.

Other researchers involved in this study include U of T professor Aled Edwards, head of the Structural Genomics Consortium; U of T post-doctoral student Jeff Reinking, master’s degree holder Mandy Lam, doctoral students Keith Pardee and Heidi Sampson and post-doctoral fellow Ping Yang; researchers Shawn Williams and Wendy White from GlaxoSmithKline; and technician Suya Liu and Professor Gilles Lajoie from the University of Western Ontario.

Henry Krause | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>