Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites trigger healthy eating in caterpillars

28.07.2005


Some parasites trigger their own destruction by altering their hosts’ behavior, researchers at The University of Arizona and Wesleyan University report in Nature.



Many parasites have developed mechanisms that suppress their hosts’ ability to fight them off or even change their behavior in favor of the parasite. "We found the opposite is true with tiger moth caterpillars and their parasites," said UA Regents’ Professor Emerita Elizabeth Bernays.

Bernays discovered the previously unknown phenomenon when she studied tiger moth caterpillars infected with parasitic fly larvae. The presence of the parasites alters their hosts’ taste organs. As a result, the caterpillars prefer to consume plants containing chemicals toxic to the parasites.


Bernays, who is in the department of entomology at UA’s College of Agriculture and Life Sciences and in the Division of Neurobiology at UA’s Arizona Research Laboratories, did the research with Michael Singer, a former doctoral student of hers who is now an assistant professor in the department of biology at Wesleyan University in Middletown, Conn.

"It is a new and surprising kind of interaction between organisms," said Bernays. "When parasites change the behavior of their hosts, it’s usually to their advantage."

The chemical war starts when parasitic flies of the tachinid family seek out their victims, the caterpillars of two species of tiger moth, Grammia geneura and Estigmene acrea. The flies lay their eggs on the outer surface (cuticle) of the caterpillar. As soon as the larvae hatch they bore through the cuticle and squeeze inside the caterpillar’s body. Inside they feast on the caterpillar’s tissue, using it as an ever-fresh live supply of food. When the fly larvae have eventually consumed and killed their host, they pupate and develop into adult flies.

But in the case of the tiger moth, co-evolution between parasite and host has resulted in an arms race involving chemical weapons.

Some plants that the caterpillars feed on produce chemicals that are toxic to the parasites and kill them. The chemicals, known as pyrrolizidine alkaloids and iridoid glycosides, are secondary compounds made by plants such as ragwort and plantain. When the caterpillars consume those plants, the substances become distributed throughout the caterpillar’s body. The caterpillars store especially high amounts in their skin and blood to deter various natural enemies.

"Normally the caterpillars wander around and eat lots of different plants," explained Bernays.

But caterpillars with parasites in their bodies behave differently, the team found.

"They are likely to stay longer on those plants that contain the protective chemicals, thus eating more of the plants that are good for them," said Bernays.

Using neurophysiological methods, Bernays and Singer figured out why parasitized caterpillars switch to a more healthful eating behavior.

When parasites are present in a caterpillar, its taste cells react differently to chemicals in the food. The cells become more responsive to the protective chemicals and less sensitive to other chemicals, which are present in the same plants but are distasteful to the caterpillar and normally cause it to crawl off and look for tastier plants elsewhere.

As a result, the change in behavior elicited by the parasites makes parasitized caterpillars consume more of the beneficial plants. In many cases, the altered behavior helps the caterpillar to escape its impending doom because the plant chemicals kill off its parasites.

Bernays and her co-worker have not yet figured out by what mechanism the parasite elicits the change of behavior on a physiological level. "It’s still a mystery how they do it," Bernays said. "But the result for the caterpillars is the same: They can survive because they find the protective plants more tasty."

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>