Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites trigger healthy eating in caterpillars

28.07.2005


Some parasites trigger their own destruction by altering their hosts’ behavior, researchers at The University of Arizona and Wesleyan University report in Nature.



Many parasites have developed mechanisms that suppress their hosts’ ability to fight them off or even change their behavior in favor of the parasite. "We found the opposite is true with tiger moth caterpillars and their parasites," said UA Regents’ Professor Emerita Elizabeth Bernays.

Bernays discovered the previously unknown phenomenon when she studied tiger moth caterpillars infected with parasitic fly larvae. The presence of the parasites alters their hosts’ taste organs. As a result, the caterpillars prefer to consume plants containing chemicals toxic to the parasites.


Bernays, who is in the department of entomology at UA’s College of Agriculture and Life Sciences and in the Division of Neurobiology at UA’s Arizona Research Laboratories, did the research with Michael Singer, a former doctoral student of hers who is now an assistant professor in the department of biology at Wesleyan University in Middletown, Conn.

"It is a new and surprising kind of interaction between organisms," said Bernays. "When parasites change the behavior of their hosts, it’s usually to their advantage."

The chemical war starts when parasitic flies of the tachinid family seek out their victims, the caterpillars of two species of tiger moth, Grammia geneura and Estigmene acrea. The flies lay their eggs on the outer surface (cuticle) of the caterpillar. As soon as the larvae hatch they bore through the cuticle and squeeze inside the caterpillar’s body. Inside they feast on the caterpillar’s tissue, using it as an ever-fresh live supply of food. When the fly larvae have eventually consumed and killed their host, they pupate and develop into adult flies.

But in the case of the tiger moth, co-evolution between parasite and host has resulted in an arms race involving chemical weapons.

Some plants that the caterpillars feed on produce chemicals that are toxic to the parasites and kill them. The chemicals, known as pyrrolizidine alkaloids and iridoid glycosides, are secondary compounds made by plants such as ragwort and plantain. When the caterpillars consume those plants, the substances become distributed throughout the caterpillar’s body. The caterpillars store especially high amounts in their skin and blood to deter various natural enemies.

"Normally the caterpillars wander around and eat lots of different plants," explained Bernays.

But caterpillars with parasites in their bodies behave differently, the team found.

"They are likely to stay longer on those plants that contain the protective chemicals, thus eating more of the plants that are good for them," said Bernays.

Using neurophysiological methods, Bernays and Singer figured out why parasitized caterpillars switch to a more healthful eating behavior.

When parasites are present in a caterpillar, its taste cells react differently to chemicals in the food. The cells become more responsive to the protective chemicals and less sensitive to other chemicals, which are present in the same plants but are distasteful to the caterpillar and normally cause it to crawl off and look for tastier plants elsewhere.

As a result, the change in behavior elicited by the parasites makes parasitized caterpillars consume more of the beneficial plants. In many cases, the altered behavior helps the caterpillar to escape its impending doom because the plant chemicals kill off its parasites.

Bernays and her co-worker have not yet figured out by what mechanism the parasite elicits the change of behavior on a physiological level. "It’s still a mystery how they do it," Bernays said. "But the result for the caterpillars is the same: They can survive because they find the protective plants more tasty."

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>