Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasites trigger healthy eating in caterpillars

28.07.2005


Some parasites trigger their own destruction by altering their hosts’ behavior, researchers at The University of Arizona and Wesleyan University report in Nature.



Many parasites have developed mechanisms that suppress their hosts’ ability to fight them off or even change their behavior in favor of the parasite. "We found the opposite is true with tiger moth caterpillars and their parasites," said UA Regents’ Professor Emerita Elizabeth Bernays.

Bernays discovered the previously unknown phenomenon when she studied tiger moth caterpillars infected with parasitic fly larvae. The presence of the parasites alters their hosts’ taste organs. As a result, the caterpillars prefer to consume plants containing chemicals toxic to the parasites.


Bernays, who is in the department of entomology at UA’s College of Agriculture and Life Sciences and in the Division of Neurobiology at UA’s Arizona Research Laboratories, did the research with Michael Singer, a former doctoral student of hers who is now an assistant professor in the department of biology at Wesleyan University in Middletown, Conn.

"It is a new and surprising kind of interaction between organisms," said Bernays. "When parasites change the behavior of their hosts, it’s usually to their advantage."

The chemical war starts when parasitic flies of the tachinid family seek out their victims, the caterpillars of two species of tiger moth, Grammia geneura and Estigmene acrea. The flies lay their eggs on the outer surface (cuticle) of the caterpillar. As soon as the larvae hatch they bore through the cuticle and squeeze inside the caterpillar’s body. Inside they feast on the caterpillar’s tissue, using it as an ever-fresh live supply of food. When the fly larvae have eventually consumed and killed their host, they pupate and develop into adult flies.

But in the case of the tiger moth, co-evolution between parasite and host has resulted in an arms race involving chemical weapons.

Some plants that the caterpillars feed on produce chemicals that are toxic to the parasites and kill them. The chemicals, known as pyrrolizidine alkaloids and iridoid glycosides, are secondary compounds made by plants such as ragwort and plantain. When the caterpillars consume those plants, the substances become distributed throughout the caterpillar’s body. The caterpillars store especially high amounts in their skin and blood to deter various natural enemies.

"Normally the caterpillars wander around and eat lots of different plants," explained Bernays.

But caterpillars with parasites in their bodies behave differently, the team found.

"They are likely to stay longer on those plants that contain the protective chemicals, thus eating more of the plants that are good for them," said Bernays.

Using neurophysiological methods, Bernays and Singer figured out why parasitized caterpillars switch to a more healthful eating behavior.

When parasites are present in a caterpillar, its taste cells react differently to chemicals in the food. The cells become more responsive to the protective chemicals and less sensitive to other chemicals, which are present in the same plants but are distasteful to the caterpillar and normally cause it to crawl off and look for tastier plants elsewhere.

As a result, the change in behavior elicited by the parasites makes parasitized caterpillars consume more of the beneficial plants. In many cases, the altered behavior helps the caterpillar to escape its impending doom because the plant chemicals kill off its parasites.

Bernays and her co-worker have not yet figured out by what mechanism the parasite elicits the change of behavior on a physiological level. "It’s still a mystery how they do it," Bernays said. "But the result for the caterpillars is the same: They can survive because they find the protective plants more tasty."

Daniel Stolte | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>