Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U Iowa researchers prevent hereditary deafness in mice

28.07.2005


Working with mice, University of Iowa scientists and colleagues from Okayama University, Japan, have shown that it is possible to cure a certain type of hereditary deafness by silencing a gene that causes hearing loss.



Richard Smith, M.D., the Sterba Hearing Research Professor in Otolaryngology at the UI Roy J. and Lucille A. Carver College of Medicine, described the study as a proof-of-principle experiment, but added that the success may point the way to new treatments for deafness in humans.

"We gave a genetically-deafened mouse interfering RNA that specifically prevents a gene from being expressed that would otherwise cause deafness. By preventing its expression, we prevented the deafness," said Smith who was senior author of the study. "Even though this is in the early stages, it is really exciting because it points to other options for people who have hearing loss other than hearing aids or cochlear implants."


The gene-silencing technique used by the UI team is called RNA interference (RNAi) and works specifically against genetic conditions caused by a so-called dominant negative mechanism -- when a single copy of the mutant gene is sufficient to cause disease because the protein from the faulty gene has a dominant adverse effect over the protein from the normal gene. Although many of the most common deafness genes do not work through this mechanism, several human forms of inherited deafness, including the one mimicked by the UI mouse model, are caused by a dominant negative mechanism.

To test the gene-silencing technique, Yukihide Maeda, M.D., Ph.D., a postdoctoral researcher in Smith’s lab and lead author of the study, introduced a mutated gene that causes deafness in humans into the inner ear of mice. This gene acted through a dominant negative mechanism, and the mice had moderate hearing loss. Next, Maeda simultaneously introduced the mutant gene and a short piece of interfering RNA specifically designed to silence the gene. Standard hearing tests, similar to those used on newborn babies, confirmed that the treated mice were able to hear.

Smith noted that RNA interference was not only successful but also highly specific. Despite the fact that the mouse and the human gene differed by only two nucleotides over the short stretch of gene targeted by the RNAi, the mutant human gene was silenced while the normal mouse gene was unaffected.

With a view to someday moving this therapy to humans, the researchers also developed a non-invasive strategy to deliver the RNAi. A small piece of foam soaked in a solution containing the interfering RNA was placed against the membrane covering one opening into the inner ear of the mice. The slightly porous membrane allowed the interfering RNA to diffuse into the inner ear cells.

Although the UI team was successful in curing the mice of their genetic deafness, and the delivery strategy should translate easily to humans, a number of issues still must be addressed before the technique can be considered as a potential human therapy. These hurdles include determining if the treatment will still work in a mouse that has been deaf for some time before the RNAi is delivered, and finding ways to sustain the gene-silencing effect over an extended period of time.

Smith added that developing the technique to produce long-term rescue of hearing loss is a future focus for his research team.

In addition to Smith and Maeda, the research team included Kunihiro Fukushima and Kazunori Nishizaki of Okayama University Graduate School of Medicine in Okayama, Japan. The study, which was published in the June 15 issue of Human Molecular Genetics, was funded by the National Institutes of Health.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>