Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells in bone marrow replenish mouse ovaries

28.07.2005


Previously unrecognized stem cells found in the bone marrow and blood of mice can "restock" a depleted ovary with new egg cells within weeks, according to new research published in this week’s issue of the journal Cell.



This finding provides direct evidence to overturn a long-held dogma in reproductive biology, that female mice generate egg cells only during fetal development and thus are born with a finite stock of eggs that declines throughout life. The new report significantly extends earlier work from the same research team reporting the first preliminary evidence that ovaries of mice can be renewed with new eggs in adulthood.

The new study suggests an unexpected source for the progenitor cells that can jumpstart new egg cell production--outside of the ovary--say Jonathan Tilly and colleagues at Massachusetts General Hospital and Harvard Medical School.


The finding is "really revolutionizing how we think about female reproductive function," Tilly says.

With the help of several genetic markers that are found in germ cells, the master cells that eventually give rise to the egg and sperm, the team shows evidence for the existence of germ cell progenitors, putative stem cells, in mouse bone marrow and blood. In addition, the researchers also found these markers in human bone marrow and blood.

Remarkably, the researchers found that bone marrow or blood cell transplants appear to completely revive the ovaries of female mice sterilized by chemotherapy. Just 24 hours after a transplant, the sterilized mice had new egg cells and follicles, the nurturing group of cells that encloses each egg cell. Two months after bone marrow transplant, the ovaries of normal mice and mice that had undergone chemotherapy appeared nearly identical, Tilly and colleagues discovered.

Expression of a germ cell marker in bone marrow fluctuated regularly with the female mouse’s estrous cycle, much like the cyclical rise and fall of certain hormones. Further results suggest that the ovary itself is sending out a chemical signal to the bone marrow, readying the progenitor cells to travel to the ovary and restock its egg cell supply.

Although it is not yet clear whether the egg cells (oocytes) generated following bone marrow transplants can mature and be fertilized to give rise to viable mouse pups, the findings provide an important first step toward investigating such potential for restoring fertility. In addition, the findings open the door for future studies examining whether restoration of ovaries could postpone the hormonal effects of menopause and could represent an alternative to hormone replacement therapy. Finally, the researchers would like to find out whether these stem cells could be coaxed to produce eggs in the laboratory, potentially providing a new source of eggs for therapeutic cloning.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>